cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A145433 Decimal expansion of Sum_{n>=1} (-1)^(n-1)*n/binomial(2n,n).

Original entry on oeis.org

2, 7, 4, 4, 3, 2, 7, 1, 5, 2, 7, 7, 1, 2, 0, 3, 2, 3, 1, 1, 1, 1, 5, 4, 6, 5, 8, 6, 3, 6, 0, 4, 8, 4, 3, 4, 0, 3, 3, 9, 6, 5, 6, 5, 4, 6, 0, 3, 2, 2, 3, 1, 7, 2, 3, 8, 0, 5, 6, 0, 4, 8, 8, 3, 1, 9, 4, 0, 4, 8, 9, 7, 2, 3, 6, 8, 9, 0, 5, 5, 6, 9, 0, 8, 9, 1, 9, 2, 2, 1, 1, 7, 5
Offset: 0

Views

Author

R. J. Mathar, Feb 08 2009

Keywords

Examples

			0.274432715277120323...
		

References

  • Alexander Apelblat, Tables of Integrals and Series, Harri Deutsch, (1996), 4.1.39

Crossrefs

Programs

  • Maple
    6/25+4/125*5^(1/2)*ln(1/2+1/2*5^(1/2)) ;
  • Mathematica
    RealDigits[6/25 + 4*Sqrt[5]*Log[GoldenRatio]/125, 10, 93] // First (* Jean-François Alcover, Oct 27 2014 *)
    RealDigits[Hypergeometric2F1[2, 2, 3/2, -1/4]/2, 10, 93] // First (* Vaclav Kotesovec, Oct 27 2014 *)

Formula

Equals 2*(15+2*A002163*A002390)/125.

A157701 Decimal expansion of 2*(14*sigma+5)/625 where sigma = sqrt(5)*log(golden ratio).

Original entry on oeis.org

0, 6, 4, 2, 0, 5, 8, 0, 1, 3, 8, 7, 9, 6, 8, 4, 5, 2, 3, 5, 5, 6, 1, 6, 5, 2, 2, 0, 9, 0, 4, 6, 7, 8, 0, 7, 6, 4, 7, 5, 5, 1, 9, 1, 6, 4, 4, 4, 5, 1, 2, 4, 4, 1, 3, 3, 2, 7, 8, 4, 6, 8, 3, 6, 4, 7, 1, 6, 6, 8, 5, 6, 1, 3, 1, 6, 4, 6, 7, 7, 9, 6, 7, 2, 4, 8, 6, 9, 0, 9, 6, 4, 6, 0, 8, 8, 6, 3, 5, 0, 0, 5, 5, 0, 9
Offset: 0

Views

Author

R. J. Mathar, Mar 04 2009

Keywords

Comments

The factor 28 in the Lehmer paper has been corrected to 14.
Equals sum_{n=1..infinity} (-1)^n*n^3/binomial(2n,n).

Examples

			0.064205801387968452355..
		

Crossrefs

Programs

  • Maple
    2/625*(14*sqrt(5)*log((1+sqrt(5))/2)+5) ;
  • Mathematica
    Join[{0},RealDigits[2*(14*Sqrt[5]*Log[GoldenRatio]+5)/625,10,120][[1]]] (* Harvey P. Dale, Mar 13 2015 *)
  • PARI
    2*(14*sqrt(5)*log((sqrt(5)+1)/2)+5)/625 \\ Charles R Greathouse IV, May 15 2019

Formula

Equals 2*(14*A002163*A002390+5)/625 .

A307086 Decimal expansion of 4*(5 - sqrt(5)*log(phi))/25, where phi is the golden ratio (A001622).

Original entry on oeis.org

6, 2, 7, 8, 3, 6, 4, 2, 3, 6, 1, 4, 3, 9, 8, 3, 8, 4, 4, 4, 4, 2, 2, 6, 7, 0, 6, 8, 1, 9, 7, 5, 7, 8, 2, 9, 8, 3, 0, 1, 7, 1, 7, 2, 6, 9, 8, 3, 8, 8, 4, 1, 3, 8, 0, 9, 7, 1, 9, 7, 5, 5, 8, 4, 0, 2, 9, 7, 5, 5, 1, 3, 8, 1, 5, 5, 4, 7, 2, 1, 5, 4, 5, 5, 4, 0, 3, 8, 9, 4, 1, 2, 1, 1, 1, 2, 0, 1, 7, 8, 3, 7, 4, 6, 7, 7, 8, 2, 8, 8, 6, 7, 0, 2, 9, 3, 8, 5, 7, 4
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 23 2019

Keywords

Comments

Decimal expansion of the alternating sum of the reciprocals of the central binomial coefficients (A000984).

Examples

			1/1 - 1/2 + 1/6 - 1/20 + 1/70 - 1/252 + ... = 0.62783642361439838444422670681975782983017172698388...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[4 (5 - Sqrt[5] Log[GoldenRatio])/25, 10, 120][[1]]
  • PARI
    4*(5 - sqrt(5)*log((sqrt(5)+1)/2))/25 \\ Charles R Greathouse IV, May 15 2019

Formula

Equals Sum_{k>=0} (-1)^k/binomial(2*k,k).
Equals Sum_{k>=0} (-1)^k*(k!)^2/(2*k)!.
Showing 1-3 of 3 results.