A145452 a(n) = (1/(10*sqrt(2)))*((1 + sqrt(2))^(3^n) - (1 - sqrt(2))^(3^n)).
1, 197, 1529074009, 715015595589726925478809323773, 73109958817558064847374518951460268418149511794461927024546978118655493358310911623870212081
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..7
Programs
-
Magma
[Evaluate(DicksonSecond(3^n -1, -1), 2)/5: n in [1..6]]; // G. C. Greubel, Mar 25 2022
-
Mathematica
Table[Simplify[Expand[(1/(10Sqrt[2]))((1+Sqrt[2])^(3^n) + (1-Sqrt[2])^(3^n))]], {n,5}] Fibonacci[3^Range[6], 2]/5 (* G. C. Greubel, Mar 25 2022 *)
-
Sage
[lucas_number1(3^n,2,-1)/5 for n in (1..6)] # G. C. Greubel, Mar 25 2022
Formula
a(n) = (1/(10*sqrt(2)))*((1 + sqrt(2))^(3^n) - (1 - sqrt(2))^(3^n)).
a(n+1) = 200*a(n)^3 - 3*a(n), a(1) = 1.
a(n) = A000129(3^n)/5 . - R. J. Mathar, Jan 18 2021
Extensions
Offset corrected by R. J. Mathar, Jan 18 2021