cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145467 Convolution square of A003114.

Original entry on oeis.org

1, 2, 3, 4, 7, 10, 15, 20, 28, 38, 52, 68, 91, 118, 153, 196, 252, 318, 403, 504, 632, 784, 973, 1196, 1473, 1800, 2198, 2668, 3238, 3908, 4714, 5660, 6789, 8112, 9683, 11516, 13685, 16210, 19178, 22628, 26671, 31354, 36821, 43140, 50489, 58968, 68796
Offset: 0

Views

Author

Michael Somos, Oct 11 2008

Keywords

Examples

			1/q + 2*q^29 + 3*q^59 + 4*q^89 + 7*q^119 + 10*q^149 + 15*q^179 + ...
		

Crossrefs

Programs

  • Maple
    # Using the function EULER from Transforms (see link at the bottom of the page).
    [1,op(EULER([seq(op([2,0,0,2,0]),n=1..9)]))]; # Peter Luschny, Aug 19 2020
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(
          a(n-j)*add(`if`(irem(d, 5) in {1, 4}, 2*d, 0),
           d=numtheory[divisors](j)), j=1..n)/n)
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Aug 19 2020
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/((1 - x^(5*k - 1))*(1 - x^(5*k - 4)))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 14 2018 *)
  • PARI
    {a(n) = local(t); if( n<0, 0, t = 1 + x * O(x^n); polcoeff( sum(k=1, sqrtint(n), t *= x^(2*k - 1) / (1 - x^k) * (1 + x * O(x^(n - k^2))), 1)^2, n))}

Formula

a(n) = A145466(5*n).
Expansion of G(x)^2 in powers of x where G() is a Rogers-Ramanujan function.
a(n) ~ exp(2*Pi*sqrt(2*n/15)) * phi / (3^(1/4) * 10^(3/4) * n^(3/4)) * (1 - (3*sqrt(15/2)/(16*Pi) + Pi/(15*sqrt(30)))/sqrt(n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Aug 14 2018
Euler transform of the period 5 sequence [2, 0, 0, 2, 0, ...]. - Georg Fischer, Aug 19 2020