A145467 Convolution square of A003114.
1, 2, 3, 4, 7, 10, 15, 20, 28, 38, 52, 68, 91, 118, 153, 196, 252, 318, 403, 504, 632, 784, 973, 1196, 1473, 1800, 2198, 2668, 3238, 3908, 4714, 5660, 6789, 8112, 9683, 11516, 13685, 16210, 19178, 22628, 26671, 31354, 36821, 43140, 50489, 58968, 68796
Offset: 0
Keywords
Examples
1/q + 2*q^29 + 3*q^59 + 4*q^89 + 7*q^119 + 10*q^149 + 15*q^179 + ...
Links
- Georg Fischer, Table of n, a(n) for n = 0..1000
Programs
-
Maple
# Using the function EULER from Transforms (see link at the bottom of the page). [1,op(EULER([seq(op([2,0,0,2,0]),n=1..9)]))]; # Peter Luschny, Aug 19 2020 # second Maple program: a:= proc(n) option remember; `if`(n=0, 1, add( a(n-j)*add(`if`(irem(d, 5) in {1, 4}, 2*d, 0), d=numtheory[divisors](j)), j=1..n)/n) end: seq(a(n), n=0..50); # Alois P. Heinz, Aug 19 2020
-
Mathematica
nmax = 50; CoefficientList[Series[Product[1/((1 - x^(5*k - 1))*(1 - x^(5*k - 4)))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 14 2018 *)
-
PARI
{a(n) = local(t); if( n<0, 0, t = 1 + x * O(x^n); polcoeff( sum(k=1, sqrtint(n), t *= x^(2*k - 1) / (1 - x^k) * (1 + x * O(x^(n - k^2))), 1)^2, n))}
Formula
a(n) = A145466(5*n).
Expansion of G(x)^2 in powers of x where G() is a Rogers-Ramanujan function.
a(n) ~ exp(2*Pi*sqrt(2*n/15)) * phi / (3^(1/4) * 10^(3/4) * n^(3/4)) * (1 - (3*sqrt(15/2)/(16*Pi) + Pi/(15*sqrt(30)))/sqrt(n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Aug 14 2018
Euler transform of the period 5 sequence [2, 0, 0, 2, 0, ...]. - Georg Fischer, Aug 19 2020