A145515 Square array A(n,k), n>=0, k>=0, read by antidiagonals: A(n,k) is the number of partitions of k^n into powers of k.
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 4, 1, 1, 1, 2, 5, 10, 1, 1, 1, 2, 6, 23, 36, 1, 1, 1, 2, 7, 46, 239, 202, 1, 1, 1, 2, 8, 82, 1086, 5828, 1828, 1, 1, 1, 2, 9, 134, 3707, 79326, 342383, 27338, 1, 1, 1, 2, 10, 205, 10340, 642457, 18583582, 50110484, 692004, 1, 1, 1, 2, 11, 298, 24901, 3649346, 446020582, 14481808030, 18757984046, 30251722, 1, 1
Offset: 0
Examples
A(2,3) = 5, because there are 5 partitions of 3^2=9 into powers of 3: [1,1,1,1,1,1,1,1,1], [1,1,1,1,1,1,3], [1,1,1,3,3], [3,3,3], [9]. Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, ... 1, 1, 2, 2, 2, 2, ... 1, 1, 4, 5, 6, 7, ... 1, 1, 10, 23, 46, 82, ... 1, 1, 36, 239, 1086, 3707, ... 1, 1, 202, 5828, 79326, 642457, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..40, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, j, k) local nn; nn:= n+1; if n<0 then 0 elif j=0 or n=0 or k<=1 then 1 elif j=1 then nn elif n>=j then (nn-j) *binomial(nn, j) *add(binomial(j, h) /(nn-j+h) *b(j-h-1, j, k) *(-1)^h, h=0..j-1) else b(n, j, k):= b(n-1, j, k) +b(k*n, j-1, k) fi end: A:= (n, k)-> b(1, n, k): seq(seq(A(n, d-n), n=0..d), d=0..13);
-
Mathematica
b[n_, j_, k_] := Module[{nn = n+1}, Which[n < 0, 0, j == 0 || n == 0 || k <= 1, 1, j == 1, nn, n >= j, (nn-j)*Binomial[nn, j]*Sum[Binomial[j, h]/(nn-j+h)* b[j-h-1, j, k]*(-1)^h, {h, 0, j-1}], True, b[n, j, k] = b[n-1, j, k] + b[k*n, j-1, k] ] ]; a[n_, k_] := b[1, n, k]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 13}] // Flatten (* Jean-François Alcover, Dec 12 2013, translated from Maple *)
Formula
See program.
For k>1: A(n,k) = [x^(k^n)] 1/Product_{j>=0} (1-x^(k^j)).
Extensions
Edited by Alois P. Heinz, Jan 12 2011