cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145515 Square array A(n,k), n>=0, k>=0, read by antidiagonals: A(n,k) is the number of partitions of k^n into powers of k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 4, 1, 1, 1, 2, 5, 10, 1, 1, 1, 2, 6, 23, 36, 1, 1, 1, 2, 7, 46, 239, 202, 1, 1, 1, 2, 8, 82, 1086, 5828, 1828, 1, 1, 1, 2, 9, 134, 3707, 79326, 342383, 27338, 1, 1, 1, 2, 10, 205, 10340, 642457, 18583582, 50110484, 692004, 1, 1, 1, 2, 11, 298, 24901, 3649346, 446020582, 14481808030, 18757984046, 30251722, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Oct 11 2008

Keywords

Examples

			A(2,3) = 5, because there are 5 partitions of 3^2=9 into powers of 3: [1,1,1,1,1,1,1,1,1], [1,1,1,1,1,1,3], [1,1,1,3,3], [3,3,3], [9].
Square array A(n,k) begins:
  1,  1,   1,    1,     1,      1,  ...
  1,  1,   2,    2,     2,      2,  ...
  1,  1,   4,    5,     6,      7,  ...
  1,  1,  10,   23,    46,     82,  ...
  1,  1,  36,  239,  1086,   3707,  ...
  1,  1, 202, 5828, 79326, 642457,  ...
		

Crossrefs

Row n=3 gives: A189890(k+1).
Main diagonal gives: A145514.
Cf. A007318.

Programs

  • Maple
    b:= proc(n, j, k) local nn;
          nn:= n+1;
          if n<0  then 0
        elif j=0  or n=0 or k<=1 then 1
        elif j=1  then nn
        elif n>=j then (nn-j) *binomial(nn, j) *add(binomial(j, h)
                       /(nn-j+h) *b(j-h-1, j, k) *(-1)^h, h=0..j-1)
                  else b(n, j, k):= b(n-1, j, k) +b(k*n, j-1, k)
          fi
        end:
    A:= (n, k)-> b(1, n, k):
    seq(seq(A(n, d-n), n=0..d), d=0..13);
  • Mathematica
    b[n_, j_, k_] := Module[{nn = n+1}, Which[n < 0, 0, j == 0 || n == 0 || k <= 1, 1, j == 1, nn, n >= j, (nn-j)*Binomial[nn, j]*Sum[Binomial[j, h]/(nn-j+h)* b[j-h-1, j, k]*(-1)^h, {h, 0, j-1}], True, b[n, j, k] = b[n-1, j, k] + b[k*n, j-1, k] ] ]; a[n_, k_] := b[1, n, k]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 13}] // Flatten (* Jean-François Alcover, Dec 12 2013, translated from Maple *)

Formula

See program.
For k>1: A(n,k) = [x^(k^n)] 1/Product_{j>=0} (1-x^(k^j)).

Extensions

Edited by Alois P. Heinz, Jan 12 2011