A145514
Number of partitions of n^n into powers of n, also diagonal of A145515 and A196879.
Original entry on oeis.org
1, 1, 4, 23, 1086, 642457, 6188114528, 1226373476385199, 6071277235712979102634, 884267692532264259002637317099, 4362395890943439751990308572939648140812, 824887275128335259519795007492785652798382136996397, 6674388542470138268339773975217339343278226845550864912413630534
Offset: 0
a(2) = 4, because there are 4 partitions of 2^2=4 into powers of 2: [1,1,1,1], [1,1,2], [2,2], [4].
-
g:= proc(b,n,k) option remember; local t; if b<0 then 0 elif b=0 or n=0 or k<=1 then 1 elif b>=n then add(g(b-t, n, k) *binomial(n+1, t) *(-1)^(t+1), t=1..n+1); else g(b-1, n, k) +g(b*k, n-1, k) fi end: a:= n-> g(1,n,n): seq(a(n), n=0..13);
-
g[b_, n_, k_] := g[b, n, k] = Which[b<0, 0, b == 0 || n == 0 || k <= 1, 1, b >= n, Sum[g[b-t, n, k] *Binomial[n+1, t]*(-1)^(t+1), {t, 1, n+1}], True, g[b-1, n, k] + g[b*k, n-1, k]]; a[n_] := g[1, n, n]; Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Feb 05 2017, translated from Maple *)
A000123
Number of binary partitions: number of partitions of 2n into powers of 2.
Original entry on oeis.org
1, 2, 4, 6, 10, 14, 20, 26, 36, 46, 60, 74, 94, 114, 140, 166, 202, 238, 284, 330, 390, 450, 524, 598, 692, 786, 900, 1014, 1154, 1294, 1460, 1626, 1828, 2030, 2268, 2506, 2790, 3074, 3404, 3734, 4124, 4514, 4964, 5414, 5938, 6462, 7060, 7658, 8350, 9042, 9828
Offset: 0
For non-squashing partitions and binary partitions see the example in A018819.
For n=3, the a(3)=6 admitted partitions of 2n=6 are 1+1+1+1+1+1, 1+1+1+1+2, 1+1+2+2, 2+2+2, 1+1+4 and 2+4. - _R. J. Mathar_, Aug 11 2021
- G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976.
- R. F. Churchhouse, Binary partitions, pp. 397-400 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.
- N. G. de Bruijn, On Mahler's partition problem, Indagationes Mathematicae, vol. X (1948), 210-220.
- G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
- H. Gupta, A simple proof of the Churchhouse conjecture concerning binary partitions, Indian J. Pure Appl. Math. 3 (1972), 791-794.
- H. Gupta, A direct proof of the Churchhouse conjecture concerning binary partitions, Indian J. Math. 18 (1976), 1-5.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..65536 (first 10001 terms from T. D. Noe)
- Joerg Arndt, Matters Computational (The Fxtbook), p. 728
- C. Banderier, H.-K. Hwang, V. Ravelomanana and V. Zacharovas, Analysis of an exhaustive search algorithm in random graphs and the n^{c logn}-asymptotics, 2012. - From _N. J. A. Sloane_, Dec 23 2012
- Sara Billey, Matjaž Konvalinka and Frederick A. Matsen IV, On trees, tanglegrams, and tangled chains, hal-02173394 [math.CO], 2020.
- Henry Bottomley, Illustration of initial terms
- N. G. de Bruijn, On Mahler's partition problem, 1948.
- R. F. Churchhouse, Congruence properties of the binary partition function, Proc. Cambridge Philos. Soc. 66 1969 371-376.
- Philippe Deléham, Letter to N. J. A. Sloane, Apr 20 1998
- P. Dumas and P. Flajolet, Asymptotique des recurrences mahleriennes: le cas cyclotomique, Journal de Théorie des Nombres de Bordeaux 8 (1996), pp. 1-30.
- Amanda Folsom et al, On a general class of non-squashing partitions, Discrete Mathematics 339.5 (2016): 1482-1506.
- C.-E. Froberg, Accurate estimation of the number of binary partitions, Nordisk Tidskr. Informationsbehandling (BIT) 17 (1977), 386-391.
- C.-E. Froberg, Accurate estimation of the number of binary partitions [Annotated scanned copy]
- Maciej Gawron, Piotr Miska and Maciej Ulas, Arithmetic properties of coefficients of power series expansion of Prod_{n>=0} (1-x^(2^n))^t, arXiv:1703.01955 [math.NT], 2017.
- H. Gupta, Proof of the Churchhouse conjecture concerning binary partitions, Proc. Camb. Phil. Soc. 70 (1971), 53-56.
- R. K. Guy, Letters to N. J. A. Sloane and J. W. Moon, 1988
- M. D. Hirschhorn and J. A. Sellers, A different view of m-ary partitions, Australasian J. Combin., 30 (2004), 193-196.
- M. D. Hirschhorn and J. A. Sellers, A different view of m-ary partitions
- Youkow Homma, Jun Hwan Ryu and Benjamin Tong, Sequence non-squashing partitions, Slides from a talk, Jul 24 2014.
- K. Ji and H. S. Wilf, Extreme palindromes, Amer. Math. Monthly, 115, no. 5 (2008), 447-451.
- Y. Kachi and P. Tzermias, On the m-ary partition numbers, Algebra and Discrete Mathematics, Volume 19 (2015). Number 1, pp. 67-76.
- Martin Klazar, What is an answer? — remarks, results and problems on PIO formulas in combinatorial enumeration, part I, arXiv:1808.08449 [math.CO], 2018.
- D. E. Knuth, An almost linear recurrence, Fib. Quart., 4 (1966), 117-128.
- M. Konvalinka and I. Pak, Cayley compositions, partitions, polytopes, and geometric bijections - _N. J. A. Sloane_, Dec 22 2012
- M. Konvalinka and I. Pak, Cayley compositions, partitions, polytopes, and geometric bijections, Journal of Combinatorial Theory, Series A, Volume 123, Issue 1, April 2014, Pages 86-91.
- Vaclav Kotesovec, Graph - the asymptotic ratio (10^8 terms)
- M. Latapy, Partitions of an integer into powers, DMTCS Proceedings AA (DM-CCG), 2001, 215-228.
- M. Latapy, Partitions of an integer into powers, DMTCS Proceedings AA (DM-CCG), 2001, 215-228. [Cached copy, with permission]
- K. Mahler, On a special functional equation, Journ. London Math. Soc. 15 (1940), 115-123.
- Mathematics Stack Exchange, Efficient computation of number of partitions into powers of 2, Jul 10 2024.
- E. O'Shea, M-partitions: optimal partitions of weight for one scale pan, Discrete Math. 289 (2004), 81-93. See Lemma 29.
- Igor Pak, Complexity problems in enumerative combinatorics, arXiv:1803.06636 [math.CO], 2018.
- John L. Pfaltz, Evaluating the binary partition function when N = 2^n, Congr. Numer, 109:3-12, 1995. [Broken link]
- B. Reznick, Some binary partition functions, in "Analytic number theory" (Conf. in honor P. T. Bateman, Allerton Park, IL, 1989), 451-477, Progr. Math., 85, Birkhäuser Boston, Boston, MA, 1990.
- O. J. Rodseth, Enumeration of M-partitions, Discrete Math., 306 (2006), 694-698.
- O. J. Rodseth and J. A. Sellers, Binary partitions revisited, J. Combinatorial Theory, Series A 98 (2002), 33-45.
- O. J. Rodseth and J. A. Sellers, On a Restricted m-Non-Squashing Partition Function, Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.4.
- D. Ruelle, Dynamical zeta functions and transfer operators, Notices Amer. Math. Soc., 49 (No. 8, 2002), 887-895; see p. 888.
- Frank Ruskey, Info on binary partitions
- N. J. A. Sloane and J. A. Sellers, On non-squashing partitions, arXiv:math/0312418 [math.CO], 2003.
- N. J. A. Sloane and J. A. Sellers, On non-squashing partitions, Discrete Math., 294 (2005), 259-274.
- Daniel G. Zhu, An improved lower bound on the Shannon capacities of complements of odd cycles, arXiv:2402.10025 [math.CO], 2024.
- Index entries for "core" sequences
-
import Data.List (transpose)
a000123 n = a000123_list !! n
a000123_list = 1 : zipWith (+)
a000123_list (tail $ concat $ transpose [a000123_list, a000123_list])
-- Reinhard Zumkeller, Nov 15 2012, Aug 01 2011
-
[1] cat [n eq 1 select n+1 else Self(n-1) + Self(n div 2): n in [1..70]]; // Vincenzo Librandi, Dec 17 2016
-
A000123 := proc(n) option remember; if n=0 then 1 else A000123(n-1)+A000123(floor(n/2)); fi; end; [ seq(A000123(i),i=0..50) ];
# second Maple program: more efficient for large n; try: a( 10^25 );
g:= proc(b, n) option remember; `if`(b<0, 0, `if`(b=0 or
n=0, 1, `if`(b>=n, add((-1)^(t+1)*binomial(n+1, t)
*g(b-t, n), t=1..n+1), g(b-1, n)+g(2*b, n-1))))
end:
a:= n-> (t-> g(n/2^(t-1), t))(max(ilog2(2*n), 1)):
seq(a(n), n=0..60); # Alois P. Heinz, Apr 16 2009, revised Apr 14 2016
-
a[0] = 1; a[n_] := a[n] = a[Floor[n/2]] + a[n-1]; Array[a,49,0] (* Jean-François Alcover, Apr 11 2011, after M. F. Hasler *)
Fold[Append[#1, Total[Take[Flatten[Transpose[{#1, #1}]], #2]]] &, {1}, Range[2, 49]] (* Birkas Gyorgy, Apr 18 2011 *)
-
{a(n) = my(A, m); if( n<1, n==0, m=1; A = 1 + O(x); while(m<=n, m*=2; A = subst(A, x, x^2) * (1+x) / (1-x)); polcoeff(A, n))}; /* Michael Somos, Aug 25 2003 */
-
{a(n) = if( n<1, n==0, a(n\2) + a(n-1))}; /* Michael Somos, Aug 25 2003 */
-
A123=[];A000123(n)={ n<3 && return(2^n); if( n<=#A123, A123[n] && return(A123[n]); A123[n-1] && return( A123[n] = A123[n-1]+A000123(n\2) ), n>2*#A123 && A123=concat(A123,vector((n-#A123)\2))); A123[if(n>#A123,1,n)]=2*sum(k=1,n\2-1,A000123(k),1)+(n%2+1)*A000123(n\2)} \\ Stores results in global vector A123 dynamically resized to at most 3n/4 when size is less than n/2. Gives a(n*10^6) in ~ n sec. - M. F. Hasler, Apr 30 2009
-
{a(n)=polcoeff(exp(sum(m=1,n,2^valuation(2*m,2)*x^m/m)+x*O(x^n)),n)} \\ Paul D. Hanna, Oct 30 2012
-
from functools import lru_cache
@lru_cache(maxsize=None)
def A000123(n): return 1 if n == 0 else A000123(n-1) + A000123(n//2) # Chai Wah Wu, Jan 18 2022
More terms from Robin Trew (trew(AT)hcs.harvard.edu)
Values up to a(10^4) checked with given PARI code by
M. F. Hasler, Apr 30 2009
A275870
Number of collapsible integer partitions of n.
Original entry on oeis.org
1, 2, 2, 4, 2, 7, 2, 10, 5, 9, 2, 34, 2, 11, 10, 36, 2, 64, 2, 60, 12, 15, 2, 320, 7, 17, 23, 94, 2, 297, 2, 202, 16, 21, 14, 1488, 2, 23, 18, 776, 2, 610, 2, 186, 148, 27, 2, 6978, 9, 319
Offset: 1
-
repcaps[q_List]:=repcaps[q]=Union[{q},If[UnsameQ@@q,{},Union@@repcaps/@Union[Sort[Append[Drop[q,#],Plus@@Take[q,#]],Greater]&/@Select[Tuples[Range[Length[q]],2],And[Less@@#,SameQ@@Take[q,#]]&]]]];
repenum[n_]:=Length[Select[IntegerPartitions[n],MemberQ[repcaps[#],{n}]&]];
Table[repenum[n],{n,1,32}](* Gus Wiseman, Aug 11 2016 *)
A300273
Sorted list of Heinz numbers of collapsible integer partitions.
Original entry on oeis.org
2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 36, 37, 40, 41, 43, 47, 48, 49, 53, 59, 61, 63, 64, 67, 71, 73, 79, 81, 83, 84, 89, 97, 101, 103, 107, 108, 109, 112, 113, 121, 125, 127, 128, 131, 137, 139, 144, 149, 151, 157, 163, 167, 169
Offset: 1
A sequence of collapses is 84 -> 63 -> 49 -> 19 corresponding to the sequence of partitions (4211) -> (422) -> (44) -> (8). Hence 84 is in the sequence.
Cf.
A000041,
A001222,
A002577,
A005117,
A018818,
A056239,
A094457,
A112798,
A145515,
A215366,
A275870,
A289078,
A289079,
A291441,
A296150,
A299202.
-
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
repcaps[q_]:=Union[{q},If[SquareFreeQ[q],{},Union@@repcaps/@Union[Times[q/#,Prime[Plus@@primeMS[#]]]&/@Select[Rest[Divisors[q]],!PrimeQ[#]&&PrimePowerQ[#]&]]]];
Select[Range[200],MemberQ[repcaps[#],_?PrimeQ]&]
A002577
Number of partitions of 2^n into powers of 2.
Original entry on oeis.org
1, 2, 4, 10, 36, 202, 1828, 27338, 692004, 30251722, 2320518948, 316359580362, 77477180493604, 34394869942983370, 27893897106768940836, 41603705003444309596874, 114788185359199234852802340, 588880400923055731115178072778, 5642645813427132737155703265972004
Offset: 0
To compute t_2(6,1) we can use a table T, defined as T[i,j]= t_2(i,j), for i=1,2,...,6(=n), and j= 0,1,2,...,32(= k*m^{n-1}). It is: 1,2,3,4,5,6,7,8,9...,33; 1,4,9,16,25,36,49...,81; (so the second row contains the first members of A000290 -- the square numbers) 1,10,35,84,165,...,969; (so the third row contains the first members of A000447. The r-th tetrahedral number is given by formula r(r+1)(r+2)/6. This row (also A000447) contains the tetrahedral numbers, obtained for r=1,3,5,7,...) 1,36,201,656,1625; 1,202,1827; 1,1828; Column 1 contains the first 6 members of A002577. - _Valentin Bakoev_, Feb 25 2009
G.f. = 1 + 2*x + 4*x^2 + 10*x^3 + 36*x^4 + 202*x^5 + 1828*x^6 + ...
- R. F. Churchhouse, Binary partitions, pp. 397-400 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.
- Lawrence, Jim. "Dual-Antiprisms and Partitions of Powers of 2 into Powers of 2." Discrete & Computational Geometry, Vol. 16 (2019): 465-478. See page 466.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..85
- V. Bakoev, Algorithmic approach to counting of certain types m-ary partitions, Discrete Mathematics, 275 (2004) pp.17-41.
- C. Banderier, H.-K. Hwang, V. Ravelomanana and V. Zacharovas, Analysis of an exhaustive search algorithm in random graphs and the n^{c logn}-asymptotics, 2012. - From _N. J. A. Sloane_, Dec 23 2012
- G. Blom and C.-E. Froeberg, Om myntvaexling, (On money-changing) [ Swedish ], Nordisk Matematisk Tidskrift, 10 (1962), 55-69, 103.
- G. Blom and C.-E. Froeberg, Om myntvaexling (On money-changing) [Swedish], Nordisk Matematisk Tidskrift, 10 (1962), 55-69, 103. [Annotated scanned copy]
- R. F. Churchhouse, Congruence properties of the binary partition function, Math. Proc. Cambr. Phil. Soc. vol 66, no. 2 (1969), 365-370.
- Carl-Erik Froberg, Accurate estimation of the number of binary partitions, BIT Numerical Mathematics vol. 17, no 4 (1977) 386-391.
- C.-E. Froberg, Accurate estimation of the number of binary partitions [Annotated scanned copy]
- H. Minc, The free commutative entropic logarithmetic, Proc. Roy. Soc. Edinburgh Sect. A 65 1959 177-192 (1959).
-
import Data.MemoCombinators (memo2, list, integral)
a002577 n = a002577_list !! n
a002577_list = f [1] where
f xs = (p' xs $ last xs) : f (1 : map (* 2) xs)
p' = memo2 (list integral) integral p
p 0 = 1; p [] = 0
p ks'@(k:ks) m = if m < k then 0 else p' ks' (m - k) + p' ks m
-- Reinhard Zumkeller, Nov 27 2015
-
A002577 := proc(n) if n<=1 then n+1 else A000123(2^(n-1)); fi; end;
-
$RecursionLimit = 10^5; (* b = A000123 *) b[0] = 1; b[n_?EvenQ] := b[n] = b[n-1] + b[n/2]; b[n_?OddQ] := b[n] = b[n-1] + b[(n-1)/2]; a[n_] := b[2^(n-1)]; a[0] = 1; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Nov 23 2011 *)
a[ n_] := SeriesCoefficient[ 1 / Product[ 1 - x^2^k, {k, 0, n}], {x, 0, 2^n}]; (* Michael Somos, Apr 21 2014 *)
-
a(n)=polcoeff(prod(j=0,n,1/(1-x^(2^j)+x*O(x^(2^n)))),2^n) \\ Paul D. Hanna
A279784
Twice partitioned numbers where the latter partitions are constant.
Original entry on oeis.org
1, 1, 3, 5, 12, 18, 40, 60, 121, 186, 344, 524, 955, 1432, 2484, 3756, 6352, 9493, 15750, 23414, 38128, 56513, 90406, 133312, 211194, 309657, 484214, 708267, 1097159, 1597290, 2454245, 3560444, 5430091, 7854174, 11894335, 17151394, 25838413, 37145198, 55648059
Offset: 0
The a(4)=12 twice-partitions are:
((4)), ((3)(1)), ((2)(2)), ((22)),
((2)(1)(1)), ((2)(11)), ((11)(2)),
((1)(1)(1)(1)), ((11)(1)(1)), ((11)(11)), ((111)(1)), ((1111)).
-
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
b(n, i-1)+`if`(i>n, 0, numtheory[tau](i)*b(n-i, i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..50); # Alois P. Heinz, Dec 20 2016
-
nn=20;CoefficientList[Series[Product[1/(1-DivisorSigma[0,n]x^n),{n,nn}],{x,0,nn}],x]
A078125
Number of partitions of 3^n into powers of 3.
Original entry on oeis.org
1, 2, 5, 23, 239, 5828, 342383, 50110484, 18757984046, 18318289003448, 47398244089264547, 329030840161393127681, 6190927493941741957366100, 318447442589056401640929570896, 45106654667152833836835578059359839
Offset: 0
Square of A078122 = A078123 as can be seen by 4 X 4 submatrix:
[1,_0,_0,0]^2=[_1,_0,_0,_0]
[1,_1,_0,0]___[_2,_1,_0,_0]
[1,_3,_1,0]___[_5,_6,_1,_0]
[1,12,_9,1]___[23,51,18,_1]
To obtain t_3(5,2) we use the table T, defined as T[i,j]= t_3(i,j), for i=1,2,...,5(=n), and j= 0,1,2,...,162(= k.m^{n-1}). It is: 1,2,3,4,5,6,7,8,...,162; 1,5,12,22,35,51,...,4510; (this row contains the first 55 members of A000326 - the pentagonal numbers) 1,23,93,238,485,...,29773; 1,239,1632,5827,15200,32856,62629; 1,5828,68457; Column 1 contains the first 5 members of this sequence. - _Valentin Bakoev_, Feb 22 2009
-
import Data.MemoCombinators (memo2, list, integral)
a078125 n = a078125_list !! n
a078125_list = f [1] where
f xs = (p' xs $ last xs) : f (1 : map (* 3) xs)
p' = memo2 (list integral) integral p
p 0 = 1; p [] = 0
p ks'@(k:ks) m = if m < k then 0 else p' ks' (m - k) + p' ks m
-- Reinhard Zumkeller, Nov 27 2015
-
m[i_, j_] := m[i, j]=If[j==0||i==j, 1, m3[i-1, j-1]]; m2[i_, j_] := m2[i, j]=Sum[m[i, k]m[k, j], {k, j, i}]; m3[i_, j_] := m3[i, j]=Sum[m[i, k]m2[k, j], {k, j, i}]; a[n_] := m2[n, 0]
A196879
Square array A(n,k), n>=0, k>=0, read by antidiagonals: A(n,k) is the number of partitions of n^k into powers of k.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 3, 10, 1, 1, 1, 1, 6, 23, 36, 1, 1, 1, 1, 9, 72, 132, 94, 1, 1, 1, 1, 16, 335, 1086, 729, 284, 1, 1, 1, 1, 36, 2220, 15265, 15076, 3987, 692, 1, 1, 1, 1, 85, 19166, 374160, 642457, 182832, 18687, 1828, 1, 1
Offset: 0
A(2,3) = 3, because the number of partitions of 2^3=8 into powers of 3 is 3: [1,1,3,3], [1,1,1,1,1,3], [1,1,1,1,1,1,1,1].
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
1, 1, 4, 3, 6, 9, ...
1, 1, 10, 23, 72, 335, ...
1, 1, 36, 132, 1086, 15265, ...
1, 1, 94, 729, 15076, 642457, ...
Columns k=0+1, 2-10 give:
A000012,
A196880,
A196881,
A196882,
A196883,
A196884,
A196885,
A196886,
A196887,
A196888.
Rows n=0+1, 2-10 give:
A000012,
A196889,
A196890,
A196891,
A196892,
A196893,
A196894,
A196895,
A196896,
A196897.
-
b:= proc(n, j, k) local nn, r;
if n<0 then 0
elif j=0 then 1
elif j=1 then n+1
elif n
-
a[, 0] = a[, 1] = a[0, ] = a[1, ] = 1; a[n_, k_] := SeriesCoefficient[ 1/Product[ (1 - x^(k^j)), {j, 0, n}], {x, 0, n^k}]; Table[a[n - k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 09 2013 *)
A152977
Square array A(n,k), n>=0, k>=0, read by antidiagonals: A(n,k) is the number of partitions of 2^n into powers of 2 less than or equal to 2^k.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 5, 1, 1, 2, 4, 9, 9, 1, 1, 2, 4, 10, 25, 17, 1, 1, 2, 4, 10, 35, 81, 33, 1, 1, 2, 4, 10, 36, 165, 289, 65, 1, 1, 2, 4, 10, 36, 201, 969, 1089, 129, 1, 1, 2, 4, 10, 36, 202, 1625, 6545, 4225, 257, 1, 1, 2, 4, 10, 36, 202, 1827, 17361, 47905, 16641, 513, 1
Offset: 0
A(3,2) = 9, because there are 9 partitions of 2^3=8 into powers of 2 less than or equal to 2^2=4: [4,4], [4,2,2], [4,2,1,1], [4,1,1,1,1], [2,2,2,2], [2,2,2,1,1], [2,2,1,1,1,1], [2,1,1,1,1,1,1], [1,1,1,1,1,1,1,1].
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 2, 2, 2, 2, ...
1, 3, 4, 4, 4, 4, ...
1, 5, 9, 10, 10, 10, ...
1, 9, 25, 35, 36, 36, ...
1, 17, 81, 165, 201, 202, ...
Columns k=0-10 give:
A000012,
A094373,
A028400(n-2) for n>1,
A210772,
A210773,
A210774,
A210775,
A210776,
A210777,
A210778,
A210779.
-
b:= proc(n,j) local nn, r;
if n<0 then 0
elif j=0 then 1
elif j=1 then n+1
elif n `if`(n=0, 1, b(2^(n-k), k)):
seq(seq(A(n, d-n), n=0..d), d=0..11);
-
b[n_, j_] := Module[{nn, r}, Which[n < 0, 0, j == 0, 1, j == 1, n+1, n < j, b[n, j] = b[n-1, j]+b[2*n, j-1], True, nn = 1+Floor[n]; r := n-nn; (nn-j)*Binomial[nn, j]*Sum[Binomial[j, h]/(nn-j+h)*b[j-h+r, j]*(-1)^h, {h, 0, j-1}]]]; a[n_, k_] := If[n == 0, 1, b[2^(n-k), k]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 11}] // Flatten (* Jean-François Alcover, Dec 18 2013, translated from Maple *)
A125792
Column 2 of table A125790; also equals row sums of matrix power A078121^2.
Original entry on oeis.org
1, 3, 9, 35, 201, 1827, 27337, 692003, 30251721, 2320518947, 316359580361, 77477180493603, 34394869942983369, 27893897106768940835, 41603705003444309596873, 114788185359199234852802339, 588880400923055731115178072777, 5642645813427132737155703265972003
Offset: 0
G.f.: 1 + 3*x + 9*x^2 + 35*x^3 + 201*x^4 + 1827*x^5 + 27337*x^6 + 692003*x^7 + ...
To obtain t_2(5,1) we use the table T, defined as T[i,j]= t_2(i,j), for i=1,2,...,5(=n), and j= 0,1,2,...,16(= k*m^{n-1}). It is 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 1,3,5,7,9,11,13,15,17 1,9,25,49,81 1,35,165 1,201 Column 1 contains the first 5 members of A125792. [_Valentin Bakoev_, Feb 15 2009]
-
g:= proc(b, n, k) option remember; local t; if b<0 then 0 elif b=0 or n=0 or k<=1 then 1 elif b>=n then add(g(b-t, n, k) *binomial(n+1, t) *(-1)^(t+1), t=1..n+1); else g(b-1, n, k) +g(b*k, n-1, k) fi end: a:= n-> g(1, n+1,2)-1: seq(a(n), n=0..25); # Alois P. Heinz, Feb 27 2009
-
T[n_, k_] := T[n, k] = T[n, k-1] + T[n-1, 2*k]; T[0, ] = T[, 0] = 1; Table[T[n, 2], {n, 0, 20} ] (* Jean-François Alcover, Jun 15 2015 *)
-
{a(n)=local(p=2,q=2,A=Mat(1), B); for(m=1, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i||j==1, B[i, j]=1, B[i, j]=(A^q)[i-1, j-1]); )); A=B); return(sum(c=0,n,(A^p)[n+1,c+1]))}
for(n=0,25,print1(a(n),", "))
-
{a(n, k=3) = if(n<1, n==0, sum(i=1, k, a(n-1, 2*i-1)))}; /* Michael Somos, Nov 24 2016 */
Showing 1-10 of 21 results.
Comments