cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A145514 Number of partitions of n^n into powers of n, also diagonal of A145515 and A196879.

Original entry on oeis.org

1, 1, 4, 23, 1086, 642457, 6188114528, 1226373476385199, 6071277235712979102634, 884267692532264259002637317099, 4362395890943439751990308572939648140812, 824887275128335259519795007492785652798382136996397, 6674388542470138268339773975217339343278226845550864912413630534
Offset: 0

Views

Author

Alois P. Heinz, Oct 11 2008

Keywords

Examples

			a(2) = 4, because there are 4 partitions of 2^2=4 into powers of 2: [1,1,1,1], [1,1,2], [2,2], [4].
		

Crossrefs

Programs

  • Maple
    g:= proc(b,n,k) option remember; local t; if b<0 then 0 elif b=0 or n=0 or k<=1 then 1 elif b>=n then add(g(b-t, n, k) *binomial(n+1, t) *(-1)^(t+1), t=1..n+1); else g(b-1, n, k) +g(b*k, n-1, k) fi end: a:= n-> g(1,n,n): seq(a(n), n=0..13);
  • Mathematica
    g[b_, n_, k_] := g[b, n, k] = Which[b<0, 0, b == 0 || n == 0 || k <= 1, 1, b >= n, Sum[g[b-t, n, k] *Binomial[n+1, t]*(-1)^(t+1), {t, 1, n+1}], True, g[b-1, n, k] + g[b*k, n-1, k]]; a[n_] := g[1, n, n]; Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Feb 05 2017, translated from Maple *)

Formula

a(n) = [x^(n^n)] 1/Product_{j>=0}(1-x^(n^j)), n>1.

A196880 Number of partitions of n^2 into powers of 2.

Original entry on oeis.org

1, 1, 4, 10, 36, 94, 284, 692, 1828, 4124, 9828, 20798, 45564, 91018, 186788, 355906, 692004, 1264678, 2347716, 4138358, 7389572, 12625938, 21804900, 36243644, 60777212, 98547380, 160987868, 255297602, 407492292, 633469718, 990388828, 1512185428, 2320518948
Offset: 0

Views

Author

Alois P. Heinz, Oct 07 2011

Keywords

Examples

			a(3) = 10, because there are 10 partitions of 3^2=9 into powers of 2: [1,8], [1,4,4], [1,2,2,4], [1,1,1,2,4], [1,1,1,1,1,4], [1,2,2,2,2], [1,1,1,2,2,2], [1,1,1,1,1,2,2], [1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1].
		

Crossrefs

Column k=2 of A196879.

Formula

a(n) = [x^(n^2)] 1/Product_{j>=0}(1-x^(2^j)).

A196881 Number of partitions of n^3 into powers of 3.

Original entry on oeis.org

1, 1, 3, 23, 132, 729, 3987, 18687, 82350, 342383, 1295579, 4634280, 15873501, 51143461, 156932559, 463212189, 1309275981, 3576241449, 9484669665, 24306269493, 60475548510, 146630200929, 345755185335, 796397380425, 1797676089003, 3970398558042, 8602390112508
Offset: 0

Views

Author

Alois P. Heinz, Oct 07 2011

Keywords

Crossrefs

Column k=3 of A196879.

Formula

a(n) = [x^(n^3)] 1/Product_{j>=0}(1-x^(3^j)).

A196882 Number of partitions of n^4 into powers of 4.

Original entry on oeis.org

1, 1, 6, 72, 1086, 15076, 182832, 1957192, 18583582, 154252476, 1166493640, 8049232896, 50660059120, 292884155232, 1582952988656, 8045405614080, 38559135542174, 174391413419872, 746859203235976, 3047000304533760, 11915800843394536, 44815994695641600
Offset: 0

Views

Author

Alois P. Heinz, Oct 07 2011

Keywords

Examples

			a(2) = 6, because there are 6 partitions of 2^4=16 into powers of 4: [16], [4,4,4,4], [1,1,1,1,4,4,4], [1,1,1,1,1,1,1,1,4,4], [1,1,1,1,1,1,1,1,1,1,1,1,4], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1].
		

Crossrefs

Column k=4 of A196879.

Formula

a(n) = [x^(n^4)] 1/Product_{j>=0}(1-x^(4^j)).

A196883 Number of partitions of n^5 into powers of 5.

Original entry on oeis.org

1, 1, 9, 335, 15265, 642457, 21719504, 619319180, 14357878818, 288862888125, 4963576426547, 73352623884216, 969821344896765, 11543613849547500, 123338010592648600, 1190399192738655590, 10575211376139294058, 87409151426766072750, 674329967169731919750
Offset: 0

Views

Author

Alois P. Heinz, Oct 07 2011

Keywords

Crossrefs

Column k=5 of A196879.

Formula

a(n) = [x^(n^5)] 1/Product_{j>=0}(1-x^(5^j)).

A196884 Number of partitions of n^6 into powers of 6.

Original entry on oeis.org

1, 1, 16, 2220, 374160, 53511471, 6188114528, 527457882126, 36521876237448, 1952615455825446, 86220169777616208, 3212254985375294550, 99345949328271872420, 2632974948301168473984, 61767819644161815082080, 1284454579537478675292282, 23584751451820642893522984
Offset: 0

Views

Author

Alois P. Heinz, Oct 07 2011

Keywords

Crossrefs

Column k=6 of A196879.

Formula

a(n) = [x^(n^6)] 1/Product_{j>=0}(1-x^(6^j)).

A196885 Number of partitions of n^7 into powers of 7.

Original entry on oeis.org

1, 1, 36, 19166, 14615986, 8939918814, 3837284133564, 1226373476385199, 270102925553717303, 46188578538444709937, 5945914039134501155164, 595502415534028698326141, 49457500873761026837492373, 3353360710521929211582306983, 186523687141803451969677785640
Offset: 0

Views

Author

Alois P. Heinz, Oct 07 2011

Keywords

Crossrefs

Column k=7 of A196879.

Formula

a(n) = [x^(n^7)] 1/Product_{j>=0}(1-x^(7^j)).

A196886 Number of partitions of n^8 into powers of 8.

Original entry on oeis.org

1, 1, 85, 217862, 880915707, 2723350958080, 5498735029150412, 6897556038713219072, 6071277235712979102634, 3511244471110991227215296, 1503179627327417142865920896, 477381405632773485831171726016, 111948028342925752822983662888144
Offset: 0

Views

Author

Alois P. Heinz, Oct 07 2011

Keywords

Crossrefs

Column k=8 of A196879.

Formula

a(n) = [x^(n^8)] 1/Product_{j>=0}(1-x^(8^j)).

A196887 Number of partitions of n^9 into powers of 9.

Original entry on oeis.org

1, 1, 210, 3428059, 87935111811, 1541533772278182, 16177644099354374847, 101539033269801820825743, 365618223095981778848684187, 884267692532264259002637317099, 1357042381209389119735863425487474, 1470981941328093110877043096244300403
Offset: 0

Views

Author

Alois P. Heinz, Oct 07 2011

Keywords

Crossrefs

Column k=9 of A196879.

Formula

a(n) = [x^(n^9)] 1/Product_{j>=0}(1-x^(9^j)).

A196888 Number of partitions of n^10 into powers of 10.

Original entry on oeis.org

1, 1, 586, 71688050, 13580513909670, 1659137949188540410, 104146398517005199125840, 3421092256089716422594644400, 64402239847567589358641684368970, 657656444358222872135019335879897500, 4362395890943439751990308572939648140812
Offset: 0

Views

Author

Alois P. Heinz, Oct 07 2011

Keywords

Crossrefs

Column k=10 of A196879.

Formula

a(n) = [x^(n^10)] 1/Product_{j>=0}(1-x^(10^j)).
Showing 1-10 of 19 results. Next