cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A196879 Square array A(n,k), n>=0, k>=0, read by antidiagonals: A(n,k) is the number of partitions of n^k into powers of k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 3, 10, 1, 1, 1, 1, 6, 23, 36, 1, 1, 1, 1, 9, 72, 132, 94, 1, 1, 1, 1, 16, 335, 1086, 729, 284, 1, 1, 1, 1, 36, 2220, 15265, 15076, 3987, 692, 1, 1, 1, 1, 85, 19166, 374160, 642457, 182832, 18687, 1828, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Oct 07 2011

Keywords

Examples

			A(2,3) = 3, because the number of partitions of 2^3=8 into powers of 3 is 3: [1,1,3,3], [1,1,1,1,1,3], [1,1,1,1,1,1,1,1].
Square array A(n,k) begins:
  1,  1,  1,   1,     1,      1,  ...
  1,  1,  1,   1,     1,      1,  ...
  1,  1,  4,   3,     6,      9,  ...
  1,  1, 10,  23,    72,    335,  ...
  1,  1, 36, 132,  1086,  15265,  ...
  1,  1, 94, 729, 15076, 642457,  ...
		

Crossrefs

Main diagonal gives: A145514.
Cf. A145515.

Programs

  • Maple
    b:= proc(n, j, k) local nn, r;
          if n<0 then 0
        elif j=0 then 1
        elif j=1 then n+1
        elif n
    				
  • Mathematica
    a[, 0] = a[, 1] = a[0, ] = a[1, ] = 1; a[n_, k_] := SeriesCoefficient[ 1/Product[ (1 - x^(k^j)), {j, 0, n}], {x, 0, n^k}]; Table[a[n - k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 09 2013 *)

Formula

For k>1: A(n,k) = [x^(n^k)] 1/Product_{j>=0}(1-x^(k^j)).
Showing 1-1 of 1 results.