cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145519 a(n) = Sum_{k=1..n} A145518(n,k).

Original entry on oeis.org

1, 2, 7, 19, 54, 134, 354, 838, 2057, 4794, 11232, 25412, 58075, 128670, 286152, 625829, 1365653, 2941088, 6331146, 13474533, 28642325, 60404681, 127082128, 265712673, 554608226, 1151374963, 2385950536, 4924685252, 10145267212, 20831428273, 42708248451
Offset: 0

Views

Author

Tilman Neumann, Oct 12 2008

Keywords

Comments

Row sums of A145518.
Also row sums of A129129, A215366.
a(n) = sum of the Heinz numbers of the partitions of n. The Heinz number of a partition p = [p_1, p_2, ..., p_r] is defined as Product(p_j-th prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the 3 partitions of 3, namely [3], [1,2], and [1,1,1] we get 5, 2*3=6, and 2*2*2=8, respectively; their sum is a(3) = 19. - Emeric Deutsch, Jun 09 2015

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i<2, 2^n,
          add(b(n-i*j, i-1)*ithprime(i)^j, j=0..iquo(n, i)))
        end:
    a:= n-> b(n, n):
    seq(a(n), n=0..35);  # Alois P. Heinz, Feb 19 2013
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0 || i < 2, 2^n, Sum[b[n-i*j, i-1]*Prime[i]^j, {j, 0, Quotient[n, i]}]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Feb 24 2015, after Alois P. Heinz *)

Formula

G.f.: 1/Product_{i>=1}(1-prime(i)*x^i). - Vladeta Jovovic, Nov 09 2008
a(n) ~ c * 2^n, where c = Product_{k>=2} 1/(1 - prime(k)/2^k) = 50.412394245500690832088704444961002125578414895935257436317... . - Vaclav Kotesovec, Sep 10 2014, updated Apr 11 2020

Extensions

a(0) inserted by Alois P. Heinz, Feb 19 2013