cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145537 a(n) is the number of numbers removed in each step of Eratosthenes's sieve for 10!.

Original entry on oeis.org

1814399, 604799, 241919, 138239, 75402, 58003, 40941, 34478, 26982, 20473, 18496, 15008, 13184, 12266, 10957, 9492, 8342, 7920, 7057, 6538, 6248, 5667, 5317, 4874, 4414, 4181, 4057, 3866, 3752, 3582, 3166, 3054, 2911, 2856, 2675, 2640, 2544, 2455, 2399
Offset: 1

Views

Author

Artur Jasinski with assistance from Bob Hanlon (hanlonr(AT)cox.net), Oct 14 2008

Keywords

Comments

Number of steps in Eratosthenes's sieve for n! is A133228(n).
Number of primes less than 10! is 10! - (sum all numbers in this sequence) - 1 = A003604(10).

Crossrefs

Programs

  • Maple
    A145537:=Array([seq(0,j=1..291)]): lim:=10!: p:=Array([seq(ithprime(j),j=1..291)]): for n from 4 to lim do if(isprime(n))then n:=n+1: fi: for k from 1 to 291 do if(n mod p[k] = 0)then A145537[k]:=A145537[k]+1: break: fi: od: od: seq(A145537[j],j=1..291); # Nathaniel Johnston, Jun 23 2011
  • Mathematica
    f3[k_Integer?Positive, i_Integer?Positive] := Module[{f, m, r, p}, p = Transpose[{r = Range[2, i], Prime[r]}];f[x_] := Catch[Fold[If[Mod[x, #2[[2]]] == 0, Throw[m[ #2[[1]]] = m[ #2[[1]]] + 1], #1] &, If[Mod[x, 2] == 0, Throw[m[1] = m[1] + 1]], p]]; Table[m[n] = -1, {n, i}]; f /@ Range[k]; Table[m[n], {n, i}]];nn = 10; kk = PrimePi[Sqrt[nn! ]]; t3 = f3[nn!, kk] (* Bob Hanlon (hanlonr(AT)cox.net) *)