cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145539 Number of numbers removed in each step of Eratosthenes's sieve for 10^6.

Original entry on oeis.org

499999, 166666, 66666, 38094, 20778, 15983, 11283, 9502, 7434, 5646, 5098, 4136, 3617, 3356, 2982, 2575, 2261, 2143, 1910, 1775, 1700, 1553, 1460, 1354, 1244, 1195, 1171, 1130, 1109, 1074, 964, 937, 898, 886, 832, 820, 794, 763, 745, 719, 697, 689, 654
Offset: 1

Views

Author

Artur Jasinski with assistance from Bob Hanlon (hanlonr(AT)cox.net), Oct 14 2008

Keywords

Comments

Number of steps in Eratosthenes's sieve for 10^n is A122121(n).
Number of primes less than 10^6 equals 10^6 - A065894(6) (sum of all numbers in this sequence) - 1 = A006880(6).
a(n) is the number of composite numbers m <= 10^6 whose least prime factor (A020639(m)) is prime(n). - Rick L. Shepherd, Mar 02 2013

Crossrefs

Programs

  • Maple
    A145539:=Array([seq(0,j=1..168)]): lim:=10^6: p:=Array([seq(ithprime(j),j=1..168)]): for n from 4 to lim do if(isprime(n))then n:=n+1: fi: for k from 1 to 168 do if(n mod p[k] = 0)then A145539[k]:=A145539[k]+1: break: fi: od: od: seq(A145539[j],j=1..168); # Nathaniel Johnston, Jun 23 2011
  • Mathematica
    f3[k_Integer?Positive, i_Integer?Positive] := Module[{f, m, r, p}, p = Transpose[{r = Range[2, i], Prime[r]}];f[x_] := Catch[Fold[If[Mod[x, #2[[2]]] == 0, Throw[m[ #2[[1]]] = m[ #2[[1]]] + 1], #1] &, If[Mod[x, 2] == 0, Throw[m[1] = m[1] + 1]], p]]; Table[m[n] = -1, {n, i}]; f /@ Range[k]; Table[m[n], {n, i}]];nn = 6; kk = PrimePi[Sqrt[10^nn]]; t3 = f3[10^nn, kk] (* Bob Hanlon (hanlonr(AT)cox.net) *)