A145600 a(n) is the number of walks from (0,0) to (0,1) that remain in the upper half-plane y >= 0 using (2*n - 1) unit steps either up (U), down (D), left (L) or right (R).
1, 8, 75, 784, 8820, 104544, 1288287, 16359200, 212751396, 2821056160, 38013731756, 519227905728, 7174705330000, 100136810390400, 1409850293610375, 20002637245262400, 285732116760449700
Offset: 1
Examples
a(2) = 8: the 8 walks from (0,0) to (0,1) of three steps are UDU, UUD, URL, ULR, RLU, LRU, RUL and LUR.
References
- M. Dukes and Y. Le Borgne, Parallelogram polyominoes, the sandpile model on a complete bipartite graph, and a q,t-Narayana polynomial, Journal of Combinatorial Theory, Series A, Volume 120, Issue 4, May 2013, Pages 816-842. - From N. J. A. Sloane, Feb 21 2013
Links
- R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6
Programs
-
Maple
a(n) := 1/n*binomial(2*n,n+1)*binomial(2*n,n-1); seq(a(n),n = 1..19);
Formula
a(n) = 1/n*binomial(2*n,n+1)*binomial(2*n,n-1).
a(n) = A135389(n-1)/(n+1). - R. J. Mathar, Jul 14 2013
D-finite with recurrence (n+1)^2*a(n) -4*n*(5*n-1)*a(n-1) +16*(2*n-3)^2*a(n-2)=0. - R. J. Mathar, Jul 14 2013
Comments