A145601 a(n) is the number of walks from (0,0) to (0,2) that remain in the upper half-plane y >= 0 using 2*n unit steps either up (U), down (D), left (L) or right (R).
1, 15, 189, 2352, 29700, 382239, 5010005, 66745536, 901995588, 12342120700, 170724392916, 2384209771200, 33577620944400, 476432168185575, 6805332732133125, 97790670976838400, 1412830549632694500
Offset: 1
Examples
a(2) = 15: the 15 walks from (0,0) to (0,2) of four steps are: UUUD, UULR, UURL, UUDU, URUL, ULUR, URLU, ULRU,RUUL, LUUR, RLUU, LRUU, RULU, LURU and UDUU.
Links
- R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6
Programs
-
Maple
with(combinat): a(n) = 3/(2*n+1)*binomial(2*n+1,n+2)*binomial(2*n+1,n-1); seq(a(n),n = 1..19);
Formula
a(n) = 3/(2*n+1)*binomial(2*n+1,n+2)*binomial(2*n+1,n-1).
Comments