A145603 a(n) is the number of walks from (0,0) to (0,4) that remain in the upper half-plane y >= 0 using 2*n +2 unit steps either up (U), down (D), left (L) or right (R).
1, 35, 720, 12375, 196625, 3006003, 45048640, 668144880, 9859090500, 145173803500, 2136958387520, 31479019635375, 464342770607625, 6861343701121875, 101583106970400000, 1507019252941540800
Offset: 1
Links
- R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6
Programs
-
Maple
with(combinat): a(n) = 5/(2*n+3)*binomial(2*n+3,n+4)*binomial(2*n+3,n-1); seq(a(n),n = 1..19);
Formula
a(n) = 5/(2*n+3)*binomial(2*n+3,n+4)*binomial(2*n+3,n-1).
G.f.: x*hypergeom([5/2, 3, 3, 7/2], [1, 6, 6], 16*x). - Stefano Spezia, Aug 26 2025
Comments