A145677 Triangle T(n, k) read by rows: T(n, 0) = 1, T(n, n) = n, n>0, T(n,k) = 0, 0 < k < n-1.
1, 1, 1, 1, 0, 2, 1, 0, 0, 3, 1, 0, 0, 0, 4, 1, 0, 0, 0, 0, 5, 1, 0, 0, 0, 0, 0, 6, 1, 0, 0, 0, 0, 0, 0, 7, 1, 0, 0, 0, 0, 0, 0, 0, 8, 1, 0, 0, 0, 0, 0, 0, 0, 0, 9, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11
Offset: 0
Examples
First few rows of the triangle: 1; 1, 1; 1, 0, 2; 1, 0, 0, 3; 1, 0, 0, 0, 4; 1, 0, 0, 0, 0, 5; 1, 0, 0, 0, 0, 0, 6; 1, 0, 0, 0, 0, 0, 0, 7; 1, 0, 0, 0, 0, 0, 0, 0, 8; 1, 0, 0, 0, 0, 0, 0, 0, 0, 9; 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Mathematica
T[n_, k_]:= If[k==0, 1, If[k==n, n, 0]]; Table[T[n, k], {n,0,14}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 23 2021 *)
-
Sage
def A145677(n,k): if (k==0): return 1 elif (k==n): return n else: return 0 flatten([[A145677(n,k) for k in (0..n)] for n in (0..14)]) # G. C. Greubel, Dec 23 2021
Formula
Extensions
Edited by R. J. Mathar, Oct 02 2009
Comments