cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145839 Number of 3-compositions of n.

Original entry on oeis.org

1, 3, 15, 73, 354, 1716, 8318, 40320, 195444, 947380, 4592256, 22260144, 107902088, 523036176, 2535324816, 12289536016, 59571339552, 288761470848, 1399719859808, 6784893012864, 32888561860032, 159421452802624, 772767131681280, 3745851196992000
Offset: 0

Views

Author

Simone Rinaldi (rinaldi(AT)unisi.it), Oct 21 2008

Keywords

Comments

A 3-composition of n is a matrix with three rows, such that each column has at least one nonzero element and whose elements sum up to n.
Matrix inverse of (A000217(A004736)*A154990). - Mats Granvik, Jan 19 2009
(1 +3*x +15*x^2 +73*x^3 + ...) = 1/(1 -3*x -6*x^2 -10*x^3 -15*x^4 - ...). - Gary W. Adamson, Jul 27 2009
For n>1, a(n) is the number of generalized compositions of n-1 when there are i^2/2 +3i/2 +1 different types of i, (i=1,2,...). - Milan Janjic, Sep 24 2010

References

  • G. Louchard, Matrix compositions: a probabilistic approach, Proceedings of GASCom and Bijective Combinatorics 2008, Bibbiena, Italy, pp. 159-170.

Crossrefs

Cf. A003480 (2-compositions), A145840 (4-compositions), A145841 (5-compositions).
Column k=3 of A261780.

Programs

  • Magma
    I:=[3,15,73]; [1] cat [n le 3 select I[n] else 6*Self(n-1) - 6*Self(n-2) + 2*Self(n-3): n in [1..30]]; // G. C. Greubel, Mar 07 2021
  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          add(a(n-j)*binomial(j+2, 2), j=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Sep 01 2015
  • Mathematica
    Table[Sum[Binomial[n+3*k-1,n]/2^(k+1),{k,0,Infinity}],{n,0,20}] (* Vaclav Kotesovec, Dec 31 2013 *)
    a[n_]:= a[n]= If[n==0, 1, Sum[Binomial[n-j+2, 2]*a[j], {j,0,n-1}]]; Table[a[n], {n, 0, 20}] (* G. C. Greubel, Mar 07 2021 *)
  • Sage
    @CachedFunction
    def a(n):
        if n==0: return 1
        else: return sum( binomial(n-j+2,2)*a(j) for j in (0..n-1))
    [a(n) for n in (0..25)] # G. C. Greubel, Mar 07 2021
    

Formula

a(n+3) = 6*a(n+2) - 6*a(n+1) + 2*a(n).
G.f.: (1-x)^3/(2*(1-x)^3 - 1).
a(n) = Sum_{k>=0} C(n+3*k-1,n) / 2^(k+1). - Vaclav Kotesovec, Dec 31 2013
a(n) = Sum_{j=0..n-1} binomial(n-j+2, 2)*a(j) with a(0) = 1. - G. C. Greubel, Mar 07 2021

Extensions

Offset corrected by Alois P. Heinz, Aug 31 2015