cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145849 a(n) = A145812(2n-1).

Original entry on oeis.org

1, 9, 33, 41, 129, 137, 161, 169, 513, 521, 545, 553, 641, 649, 673, 681, 2049, 2057, 2081, 2089, 2177, 2185, 2209, 2217, 2561, 2569, 2593, 2601, 2689, 2697, 2721, 2729, 8193, 8201, 8225, 8233, 8321, 8329, 8353, 8361, 8705, 8713, 8737, 8745, 8833, 8841, 8865, 8873, 10241
Offset: 1

Views

Author

Vladimir Shevelev, Oct 21 2008

Keywords

Comments

Every positive odd integer m==3 (mod 8) is a unique sum of the form a(s)+2a(t), while other odd integers are not expressible in this form.

Crossrefs

Bisection of A145812.

Programs

  • Mathematica
    a[n_] := 2 * FromDigits[IntegerDigits[2*n-2, 2], 4] + 1; Array[a, 50] (* Amiram Eldar, Dec 16 2018 *)
  • PARI
    a145812(n) = 2*fromdigits(binary(n-1), 4) + 1;
    a(n) = a145812(2*n-1); \\ Michel Marcus, Dec 13 2018

Formula

If f(x) = Sum_{n>=1}x^a(n), abs(x) < 1, then f(x)*f(x^2) = x^3/(1 - x^8).

Extensions

More terms from Michel Marcus, Dec 13 2018