cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145867 Number of involutions of length 2n which are invariant under the reverse-complement map and have no decreasing subsequence of length 7.

Original entry on oeis.org

1, 2, 6, 20, 74, 292, 1214, 5252, 23468, 107672, 505048, 2413776, 11723188, 57737032, 287853518, 1450697572, 7381645844, 37884748712, 195947389208, 1020610698832, 5349968198328, 28208066576176, 149526042974008, 796520870628752, 4262367319460848
Offset: 0

Views

Author

Eric S. Egge, Oct 22 2008

Keywords

Crossrefs

Cf. A001006.

Programs

  • Mathematica
    Array[Cat, 21, 0]; For[i = 0, i < 21, ++i, Cat[i] = (1/(i + 1))*Binomial[2*i, i]]; Array[Mot, 21, 0]; For[i = 0, i < 21, ++i, Mot[i] = Sum[Binomial[i, 2*j]*Cat[j], {j, 0, Floor[i/2]}]]; Table[Sum[Binomial[n, j]*Mot[j]*Mot[n - j], {j, 0, n}], {n, 0, 15}]

Formula

a(n) = sum(j,0,n, C(n,j)*A001006(j)*A001006(n-j)), where C(n,j) = n!/(j!(n-j)!).
Recurrence: (n+2)*(n+4)*a(n) = 6*(n^2 + 3*n + 1)*a(n-1) + 4*(n-1)*(n+1)*a(n-2) - 24*(n-2)*(n-1)*a(n-3). - Vaclav Kotesovec, Feb 18 2015
a(n) ~ 9 * 6^(n+1) / (Pi * n^3). - Vaclav Kotesovec, Feb 18 2015
E.g.f.: exp(2*x)*BesselI(1,2*x)^2/x^2. - Ilya Gutkovskiy, Sep 21 2017

Extensions

More terms from Alois P. Heinz, Feb 18 2015