A145867 Number of involutions of length 2n which are invariant under the reverse-complement map and have no decreasing subsequence of length 7.
1, 2, 6, 20, 74, 292, 1214, 5252, 23468, 107672, 505048, 2413776, 11723188, 57737032, 287853518, 1450697572, 7381645844, 37884748712, 195947389208, 1020610698832, 5349968198328, 28208066576176, 149526042974008, 796520870628752, 4262367319460848
Offset: 0
Keywords
Crossrefs
Cf. A001006.
Programs
-
Mathematica
Array[Cat, 21, 0]; For[i = 0, i < 21, ++i, Cat[i] = (1/(i + 1))*Binomial[2*i, i]]; Array[Mot, 21, 0]; For[i = 0, i < 21, ++i, Mot[i] = Sum[Binomial[i, 2*j]*Cat[j], {j, 0, Floor[i/2]}]]; Table[Sum[Binomial[n, j]*Mot[j]*Mot[n - j], {j, 0, n}], {n, 0, 15}]
Formula
Recurrence: (n+2)*(n+4)*a(n) = 6*(n^2 + 3*n + 1)*a(n-1) + 4*(n-1)*(n+1)*a(n-2) - 24*(n-2)*(n-1)*a(n-3). - Vaclav Kotesovec, Feb 18 2015
a(n) ~ 9 * 6^(n+1) / (Pi * n^3). - Vaclav Kotesovec, Feb 18 2015
E.g.f.: exp(2*x)*BesselI(1,2*x)^2/x^2. - Ilya Gutkovskiy, Sep 21 2017
Extensions
More terms from Alois P. Heinz, Feb 18 2015