A145905 Square array read by antidiagonals: Hilbert transform of triangle A060187.
1, 1, 1, 1, 3, 1, 1, 9, 5, 1, 1, 27, 25, 7, 1, 1, 81, 125, 49, 9, 1, 1, 243, 625, 343, 81, 11, 1, 1, 729, 3125, 2401, 729, 121, 13, 1, 1, 2187, 15625, 16807, 6561, 1331, 169, 15, 1, 1, 6561, 78125, 117649, 59049, 14641, 2197, 225, 17, 1, 1, 19683, 390625, 823543
Offset: 0
Examples
Triangle A060187 (with an offset of 0) begins 1; 1, 1; 1, 6, 1; so the entries in the first three rows of the Hilbert transform of A060187 come from the expansions: Row 0: 1/(1-x) = 1 + x + x^2 + x^3 + ...; Row 1: (1+x)/(1-x)^2 = 1 + 3*x + 5*x^2 + 7*x^3 + ...; Row 2: (1+6*x+x^2)/(1-x)^3 = 1 + 9*x + 25*x^2 + 49*x^3 + ...; The array begins n\k|..0....1.....2.....3......4 ================================ 0..|..1....1.....1.....1......1 1..|..1....3.....5.....7......9 2..|..1....9....25....49.....81 3..|..1...27...125...343....729 4..|..1...81...625..2401...6561 5..|..1..243..3125.16807..59049 ...
Links
- Ghislain R. Franssens, On a Number Pyramid Related to the Binomial, Deleham, Eulerian, MacMahon and Stirling number triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.4.1.
- S. Parker, The Combinatorics of Functional Composition and Inversion, Ph.D. Dissertation, Brandeis Univ. (1993) [From _Tom Copeland_, Nov 09 2008]
Programs
-
Maple
T:=(n,k) -> (2*k + 1)^n: seq(seq(T(n-k,k),k = 0..n),n = 0..10);
Comments