cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A185727 Integers of the form A145911(k)/(k+1) sorted along increasing k.

Original entry on oeis.org

0, 2, 1, 5, 2, 8, 1, 11, 4, 14, 5, 17, 2, 20, 7, 23, 8, 26, 3, 29, 10, 32, 11, 35, 4, 38, 13, 41, 14, 44, 5, 47, 16, 50, 17, 53, 6, 56, 19, 59, 20, 62, 7, 65, 22, 68, 23, 71, 8, 74, 25, 77, 26, 80, 9, 83, 28, 86, 29, 89, 10, 92, 31, 95, 32, 98, 11, 101, 34, 104, 35, 107, 12, 110, 37, 113, 38, 116, 13, 119, 40, 122
Offset: 0

Views

Author

Paul Curtz, Feb 05 2011

Keywords

Comments

The standard offset is changed to zero to simplify formulas related to the a(n).
The sequence of fractions A145911(k)/(k+1) is 0, 1/2, 1/3, 1/2, 2, 5/6, 1, 7/2, 4/9, 1/2, 5, 11/6, 2, 13/2, 7/3, 5/2, 8, 17/18, 1, 19/2, 10/3, 7/2, 11, 23/6, 4, 25/2, 13/9, 3/2, 14, 29/6, ....
Its numerators are A106619. Integer values appear at indices of the form 6*n and 4+6*n.
The sequence of denominators of the fractions appears to have a period of length 18.
a(n+18)-a(n) = 3*(a(n+6)-a(n)) = 3, 27, 9, 27, 9, 27, 3, 27, 9, ,... are multiples of 3, apparently with a period of length 6.
The recurrence a(n) = 2a(n-6)-a(n-12) shows that the sequence consists of 6 interleaved first-order polynomials: a(6*n)=n. a(1+6*n) = 2+9*n. a(2+6*n) = 1+3*n = A016777(n). a(3+6*n) = 5+9*n. a(4+6*n) = 2+3*n = A016789(n). a(5+6*n) = 8+9*n. - Paul Curtz, Feb 23 2011

Programs

  • Maple
    A106619 := proc(n) numer(n/(n+18)) ; end proc:
    A185727 := proc(n) if type(n,'even') then A106619(3*n) ; else A106619(3*n+1) ; end if; end proc:
    seq(A185727(n),n=0..80) ; # R. J. Mathar, Feb 18 2011
  • Mathematica
    CoefficientList[Series[x*(2 + x + 5*x^2 + 2*x^3 + 8*x^4 + x^5 + 7*x^6 + 2*x^7 + 4*x^8 + x^9 + x^10)/((x - 1)^2*(1 + x)^2*(1 + x + x^2)^2*(x^2 - x + 1)^2), {x,0,50}], x] (* G. C. Greubel, Jul 11 2017 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(x*(2 + x + 5*x^2 + 2*x^3 + 8*x^4 + x^5 + 7*x^6 + 2*x^7 + 4*x^8 + x^9 + x^10)/((x - 1)^2*(1 + x)^2*(1 + x + x^2)^2*(x^2 - x + 1)^2))) \\ G. C. Greubel, Jul 11 2017

Formula

a(2*n) = A051176(n) = A106619(6n).
a(1+2*n) = 2+3*n = A106619(4+6*n).
a(6*n) = n.
From R. J. Mathar, Feb 10 2011: (Start)
a(n)= +2*a(n-6) -a(n-12).
G.f.: x*(2+x +5*x^2 +2*x^3 +8*x^4 +x^5 +7*x ^6 +2*x^7 +4*x^8 +x^9 +x^10) / ( (x-1)^2*(1+x)^2*(1+x+x^2)^2*(x^2-x+1)^2 ). (End)
a(n) = A014682(n) if n is not a multiple of 6. - Paul Curtz, Feb 23 2011

A178978 a(n) = A144448(n+1)/8.

Original entry on oeis.org

0, 2, 5, 1, 14, 20, 1, 35, 44, 2, 65, 77, 10, 104, 119, 5, 152, 170, 7, 209, 230, 28, 275, 299, 4, 350, 377, 5, 434, 464, 55, 527, 560, 22, 629, 665, 26, 740, 779, 91, 860, 902, 35, 989, 1034, 40, 1127, 1175, 136, 1274, 1325, 17
Offset: 0

Views

Author

Paul Curtz, Jan 02 2011

Keywords

Comments

Differs from A178971 for indices n > 23.

Crossrefs

Programs

Formula

Trisections:
a(3*n) = A145911(n);
a(3*n+1) = A145910(n);
a(3*n+2) = A178977(n).
a(n) = 3*a(n-27) - 3*a(n-54) + a(n-81). - G. C. Greubel, Mar 06 2022
Showing 1-2 of 2 results.