A145990 Primes which start a run of at least length 2 of consecutive primes == 1 (mod 4).
13, 37, 89, 109, 193, 229, 277, 313, 349, 389, 449, 509, 613, 661, 701, 757, 797, 853, 877, 929, 997, 1093, 1109, 1193, 1237, 1297, 1373, 1429, 1489, 1549, 1597, 1609, 1637, 1669, 1709, 1733, 1789, 1873, 1889, 1933, 1993, 2069, 2113, 2137, 2153, 2213, 2269
Offset: 1
Examples
a(1)=13 because this sequence includes consecutive runs of any length and this first term > 1 in a run of 2 is 13.
References
- Enoch Haga, Exploring Primes on Your PC and the Internet, 1994-2007, pp. 30-31. ISBN 978-1-885794-24-6
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Maple
for i from 2 to 300 do if (ithprime(i) mod 4) = 1 and ithprime(i-1) mod 4 <> 1 and ithprime(i+1) mod 4 = 1 then printf("%d,",ithprime(i)) ; end if; end do: # R. J. Mathar, Sep 30 2011
-
Mathematica
Prime[#+1]&/@(SequencePosition[Table[If[Mod[n,4]==1,1,0],{n,Prime[ Range[ 350]]}],{0,1,1},Overlaps->False][[All,1]]) (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 02 2017 *)
-
UBASIC
10 'cluster primes 20 C=1 30 input "end #";L 40 for N=3 to L step 2 50 S=int(sqrt(N)) 60 for A=3 to S step 2 70 B=N/A 80 if int(B)*A=N then cancel for:goto 170 90 next A 100 C=C+1 110 E=N/4:E=int(E):R=N-(4*E) 120 if R=1 then print N;:C1=C1+1:T1=T1+1:print T1 130 if R=3 then T1=0 140 if R=3 then print " ";N;:C3=C3+1:T2=T2+1:print T2 150 if R=1 then T2=0 160 if T1>10 or T2>10 then stop 170 next 180 print "Total primes=";C;:print "Type A";C1;"Type B";C3
Extensions
Corrected and extended by Harvey P. Dale, Aug 02 2017