cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A146085 Positive integers a(n) such that for every integer m == 1 (mod 3), m >= 4, there exists a unique representation of m as a sum of the form a(l) + 3*a(s).

Original entry on oeis.org

1, 4, 7, 28, 31, 34, 55, 58, 61, 244, 247, 250, 271, 274, 277, 298, 301, 304, 487, 490, 493, 514, 517, 520, 541, 544, 547, 2188, 2191, 2194, 2215, 2218, 2221, 2242, 2245, 2248, 2431, 2434, 2437, 2458, 2461, 2464, 2485, 2488, 2491, 2674, 2677, 2680, 2701, 2704, 2707, 2728, 2731, 2734
Offset: 1

Views

Author

Vladimir Shevelev, Oct 27 2008

Keywords

Comments

Theorem. An integer is in the sequence iff in its expansion on base 3 all digits at the k-th position from the end, k=3, 5, 7, ..., are zeros while the first digit from the end is 1. To get the decomposition of m==1(mod 3) as sum a(l)+3a(s), write m-3 as Sum b_j 3^j, then a(l) = 1 + Sum_{j odd} b_j 3^j.

Examples

			If m=46, then we have 46=1*3^0+2*3^2+1*3^3, thus a(l)=1+1*3^3=28 and the required decomposition is: 46=28+3*4, such that a(s)=4. We see that l=4, s=2, i.e. "index coordinates" of 46 are (4, 2). Thus we have a one-to-one map of integers m==1(mod 3), m>=4, to the positive lattice points on the plane.
		

Crossrefs

Programs

  • PARI
    isok(n) = {my(d=Vecrev(digits(n, 3)), k=3); while (k <= #d, if (d[k], return (0)); k += 2;); d[1] == 1;} \\ Michel Marcus, Dec 09 2018

Extensions

More terms from Michel Marcus, Dec 09 2018