A146163 Expansion of q^(-3/4) * eta(q^2)^2 * eta(q^20) / (eta(q)^2 * eta(q^4)) in powers of q.
1, 2, 3, 6, 10, 16, 25, 38, 57, 84, 121, 172, 243, 338, 465, 636, 862, 1158, 1546, 2050, 2701, 3540, 4613, 5980, 7719, 9916, 12682, 16158, 20506, 25926, 32667, 41022, 51348, 64080, 79730, 98922, 122407, 151068, 185968, 228384, 279816, 342052
Offset: 0
Keywords
Examples
q^3 + 2*q^7 + 3*q^11 + 6*q^15 + 10*q^19 + 16*q^23 + 25*q^27 + 38*q^31 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
nmax = 50; CoefficientList[Series[Product[(1+x^k)^2 * (1-x^(20*k)) / (1-x^(4*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 11 2016 *) a[n_]:= SeriesCoefficient[QPochhammer[-q, q]^2*QPochhammer[q^20, q^20]/(QPochhammer[q^4, q^4]), {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Dec 05 2017 *)
-
PARI
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^20 + A) / (eta(x + A)^2 * eta(x^4 + A)), n))}
Formula
Euler transform of period 20 sequence [ 2, 0, 2, 1, 2, 0, 2, 1, 2, 0, 2, 1, 2, 0, 2, 1, 2, 0, 2, 0, ...].
a(n) ~ exp(2*Pi*sqrt(n/5)) / (4*5^(3/4)*n^(3/4)). - Vaclav Kotesovec, Jul 11 2016
a(n) = A146162(4*n + 3).