cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A146304 Number of distinct ways to place bishops (up to 2n-2) on an n X n chessboard so that no bishop is attacking another and that it is not possible to add another bishop.

Original entry on oeis.org

1, 4, 10, 64, 660, 7744, 111888, 1960000, 40829184, 989479936, 27559645440, 870414361600, 30942459270912, 1225022400102400, 53716785891102720, 2589137004664520704, 136573353235553058816, 7838079929528363843584, 487668908919708442951680, 32741107405951528945844224
Offset: 1

Views

Author

Paolo Bonzini, Oct 29 2008

Keywords

Comments

Number of maximal independent vertex sets (and minimal vertex covers) in the n X n bishop graph. - Eric W. Weisstein, Jun 04 2017

Examples

			For n=2, the a(2) = 4 solutions are to place two bishops on the same row (two solutions) or column (two solutions).
		

Crossrefs

Programs

  • Mathematica
    M[sig_List, n_, k_, d_, x_] := M[sig, n, k, d, x] = If[n == 0, Boole[k == 0], If[k > 0, k*x*M[sig, n - 1, k - 1, d, x], 0] + If[k < n && sig[[n]] > d, (sig[[n]] - d)*x*M[sig, n - 1, k, d + 1, x], 0] + If[k + sig[[n]] - d < n, M[sig, n - 1, k + sig[[n]] - d, sig[[n]], x], 0]];
    Q[sig_List, x_] := M[sig, Length[sig], 0, 0, x];
    Bishop[n_, white_] := Table[n - i + If[white == 1, 1 - Mod[i, 2], Mod[i, 2]], {i, 1, n - If[white == 1, Mod[n, 2], 1 - Mod[n, 2]]}]
    a[n_] := Q[Bishop[n, 0], 1]*Q[Bishop[n, 1], 1];
    Table[a[n], {n, 1, 20}] (* Jean-François Alcover, Jun 15 2017, translated from Andrew Howroyd's PARI code *)
  • PARI
    \\ Needs memoization - see note on algorithm for a faster version.
    M(sig,n,k,d,x)={if(n==0,k==0, if(k>0,k*x*M(sig,n-1,k-1,d,x),0) + if(kd,(sig[n]-d)*x*M(sig,n-1,k,d+1,x),0) + if(k+sig[n]-dAndrew Howroyd, Jun 05 2017

Formula

Conjectured to be a(n) = O(n^(n-1)).
a(n) = A290594(n) * A290613(n) for n > 1. - Andrew Howroyd, Aug 09 2017

Extensions

a(10)-a(11) from Andrew Howroyd, May 21 2017
Terms a(12) and beyond from Andrew Howroyd, Jun 05 2017