A146304 Number of distinct ways to place bishops (up to 2n-2) on an n X n chessboard so that no bishop is attacking another and that it is not possible to add another bishop.
1, 4, 10, 64, 660, 7744, 111888, 1960000, 40829184, 989479936, 27559645440, 870414361600, 30942459270912, 1225022400102400, 53716785891102720, 2589137004664520704, 136573353235553058816, 7838079929528363843584, 487668908919708442951680, 32741107405951528945844224
Offset: 1
Keywords
Examples
For n=2, the a(2) = 4 solutions are to place two bishops on the same row (two solutions) or column (two solutions).
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Andrew Howroyd, Algorithm and explanation of PARI code
- Eric Weisstein's World of Mathematics, Bishop Graph
- Eric Weisstein's World of Mathematics, Maximal Independent Vertex Set
- Eric Weisstein's World of Mathematics, Minimal Vertex Cover
Programs
-
Mathematica
M[sig_List, n_, k_, d_, x_] := M[sig, n, k, d, x] = If[n == 0, Boole[k == 0], If[k > 0, k*x*M[sig, n - 1, k - 1, d, x], 0] + If[k < n && sig[[n]] > d, (sig[[n]] - d)*x*M[sig, n - 1, k, d + 1, x], 0] + If[k + sig[[n]] - d < n, M[sig, n - 1, k + sig[[n]] - d, sig[[n]], x], 0]]; Q[sig_List, x_] := M[sig, Length[sig], 0, 0, x]; Bishop[n_, white_] := Table[n - i + If[white == 1, 1 - Mod[i, 2], Mod[i, 2]], {i, 1, n - If[white == 1, Mod[n, 2], 1 - Mod[n, 2]]}] a[n_] := Q[Bishop[n, 0], 1]*Q[Bishop[n, 1], 1]; Table[a[n], {n, 1, 20}] (* Jean-François Alcover, Jun 15 2017, translated from Andrew Howroyd's PARI code *)
-
PARI
\\ Needs memoization - see note on algorithm for a faster version. M(sig,n,k,d,x)={if(n==0,k==0, if(k>0,k*x*M(sig,n-1,k-1,d,x),0) + if(k
d,(sig[n]-d)*x*M(sig,n-1,k,d+1,x),0) + if(k+sig[n]-d Andrew Howroyd, Jun 05 2017
Formula
Conjectured to be a(n) = O(n^(n-1)).
Extensions
a(10)-a(11) from Andrew Howroyd, May 21 2017
Terms a(12) and beyond from Andrew Howroyd, Jun 05 2017
Comments