cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A146305 Array T(n,m) = 2*(2m+3)!*(4n+2m+1)!/(m!*(m+2)!*n!*(3n+2m+3)!) read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 3, 5, 5, 13, 20, 21, 14, 68, 100, 105, 84, 42, 399, 570, 595, 504, 330, 132, 2530, 3542, 3675, 3192, 2310, 1287, 429, 16965, 23400, 24150, 21252, 16170, 10296, 5005, 1430, 118668, 161820, 166257, 147420, 115500, 78936, 45045, 19448, 4862, 857956
Offset: 0

Views

Author

R. J. Mathar, Oct 29 2008

Keywords

Comments

T(n,m) is the number of rooted nonseparable (2-connected) triangulations of the disk with n internal nodes and 3 + m nodes on the external face. The triangulation has 2*n + m + 1 triangles and 3*(n+1) + 2*m edges. - Andrew Howroyd, Feb 21 2021

Examples

			The array starts at row n=0 and column m=0 as
.....1......2.......5......14.......42.......132
.....1......5......21......84......330......1287
.....3.....20.....105.....504.....2310.....10296
....13....100.....595....3192....16170.....78936
....68....570....3675...21252...115500....602316
...399...3542...24150..147420...844074...4628052
..2530..23400..166257.1057224..6301680..35939904
.16965.161820.1186680.7791168.47948670.282285432
		

Crossrefs

Columns m=0..3 are A000260, A197271(n+1), A341853, A341854.
Rows n=0..2 are A000108(n+1), A002054(n+1) and A000917.
Antidiagonal sums are A000260(n+1).
Cf. A169808 (unrooted), A169809 (achiral), A262586 (oriented).

Programs

  • Maple
    A146305 := proc(n,m)
        2*(2*m+3)!*(4*n+2*m+1)!/m!/(m+2)!/n!/(3*n+2*m+3)! ;
    end proc:
    for d from 0 to 13 do
        for m from 0 to d do
            printf("%d,", A146305(d-m,m)) ;
        end do:
    end do:
  • Mathematica
    T[n_, m_] := 2*(2*m+3)!*(4*n+2*m+1)!/m!/(m+2)!/n!/(3*n+2*m+3)!; Table[T[n-m, m], {n, 0, 13}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jan 06 2014, after Maple *)
  • PARI
    T(n,m)={2*(2*m+3)!*(4*n+2*m+1)!/(m!*(m+2)!*n!*(3*n+2*m+3)!)} \\ Andrew Howroyd, Feb 21 2021