A146305 Array T(n,m) = 2*(2m+3)!*(4n+2m+1)!/(m!*(m+2)!*n!*(3n+2m+3)!) read by antidiagonals.
1, 1, 2, 3, 5, 5, 13, 20, 21, 14, 68, 100, 105, 84, 42, 399, 570, 595, 504, 330, 132, 2530, 3542, 3675, 3192, 2310, 1287, 429, 16965, 23400, 24150, 21252, 16170, 10296, 5005, 1430, 118668, 161820, 166257, 147420, 115500, 78936, 45045, 19448, 4862, 857956
Offset: 0
Examples
The array starts at row n=0 and column m=0 as .....1......2.......5......14.......42.......132 .....1......5......21......84......330......1287 .....3.....20.....105.....504.....2310.....10296 ....13....100.....595....3192....16170.....78936 ....68....570....3675...21252...115500....602316 ...399...3542...24150..147420...844074...4628052 ..2530..23400..166257.1057224..6301680..35939904 .16965.161820.1186680.7791168.47948670.282285432
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325
- Alin Bostan, Frédéric Chyzak, and Vincent Pilaud, Refined product formulas for Tamari intervals, arXiv:2303.10986 [math.CO], 2023.
- William G. Brown, Enumeration of Triangulations of the Disk, Proc. Lond. Math. Soc. s3-14 (1964) 746-768.
Crossrefs
Programs
-
Maple
A146305 := proc(n,m) 2*(2*m+3)!*(4*n+2*m+1)!/m!/(m+2)!/n!/(3*n+2*m+3)! ; end proc: for d from 0 to 13 do for m from 0 to d do printf("%d,", A146305(d-m,m)) ; end do: end do:
-
Mathematica
T[n_, m_] := 2*(2*m+3)!*(4*n+2*m+1)!/m!/(m+2)!/n!/(3*n+2*m+3)!; Table[T[n-m, m], {n, 0, 13}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jan 06 2014, after Maple *)
-
PARI
T(n,m)={2*(2*m+3)!*(4*n+2*m+1)!/(m!*(m+2)!*n!*(3*n+2*m+3)!)} \\ Andrew Howroyd, Feb 21 2021
Comments