cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A000260 Number of rooted simplicial 3-polytopes with n+3 nodes; or rooted 3-connected triangulations with 2n+2 faces; or rooted 3-connected trivalent maps with 2n+2 vertices.

Original entry on oeis.org

1, 1, 3, 13, 68, 399, 2530, 16965, 118668, 857956, 6369883, 48336171, 373537388, 2931682810, 23317105140, 187606350645, 1524813969276, 12504654858828, 103367824774012, 860593023907540, 7211115497448720, 60776550501588855
Offset: 0

Views

Author

Keywords

Comments

Number of rooted loopless planar maps with n edges. E.g., there are a(2)=3 loopless planar maps with 2 edges: two rooted paths (.-.-.) and one digon (.=.). - Valery A. Liskovets, Sep 25 2003
Number of intervals (i.e., ordered pairs (x,y) such that x<=y) in the Tamari lattice (rotation lattice of binary trees) of size n (see Pallo and Chapoton references). - Ralf Stephan, May 08 2007, Jean Pallo (Jean.Pallo(AT)u-bourgogne.fr), Sep 11 2007
Number of rooted triangulations of type [n, 0] (see Brown paper eq (4.8)). - Michel Marcus, Jun 23 2013
Equivalently, number of rooted bridgeless planar maps with n edges. - Noam Zeilberger, Oct 06 2016
The September 2018 talk by Noam Zeilberger (see link to video) connects three topics (planar maps, Tamari lattices, lambda calculus) and eight sequences: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827. - N. J. A. Sloane, Sep 17 2018
Number of uniquely sorted permutations of [2n+1] that avoid the pattern 231. Also the number of uniquely sorted permutations of [2n+1] that avoid 132. - Colin Defant, Jun 13 2019
The sequence 1,3,13,68,... appears naturally in integral geometry, namely in the algebra of unitarily invariant valuations on complex space forms. - Andreas Bernig, Feb 02 2020

Examples

			G.f. = 1 + x + 3*x^2 + 13*x^3 + 68*x^4 + 399*x^5 + 2530*x^6 + 16965*x^7 + ...
		

References

  • C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 714.
  • Handbook of Combinatorics, North-Holland '95, p. 891.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • W. T. Tutte, The enumerative theory of planar maps, in A Survey of Combinatorial Theory (J. N. Srivastava et al. eds.), pp. 437-448, North-Holland, Amsterdam, 1973.

Crossrefs

Row sums of A342981.
Column 0 of A146305 and A341856; Column 2 of A255918.
Sequences mentioned in the Noam Zeilberger 2018 video: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827.

Programs

  • Magma
    [Binomial(4*n+1, n+1)-9*Binomial(4*n+1, n-1): n in [0..25]]; // Vincenzo Librandi, Nov 24 2016
  • Maple
    A000260 := proc(n)
        2*(4*n+1)!/((n+1)!*(3*n+2)!) ;
    end proc:
  • Mathematica
    Table[Binomial[4n+1,n+1]-9*Binomial[4n+1,n-1],{n,0,25}] (* Harvey P. Dale, Aug 23 2011 *)
    a[ n_] := SeriesCoefficient[ HypergeometricPFQ[ {1/2, 3/4, 1, 5/4}, {4/3, 5/3, 2}, 256/27 x], {x, 0, n}]; (* Michael Somos, Dec 23 2014 *)
    terms = 22; G[] = 0; Do[G[x] = 1+x*G[x]^4 + O[x]^terms, terms];
    CoefficientList[(2-G[x])*G[x]^2, x] (* Jean-François Alcover, Jan 13 2018, after Mark van Hoeij *)
  • PARI
    {a(n) = if( n<0, 0, 2 * (4*n + 1)! / ((n + 1)! * (3*n + 2)!))}; /* Michael Somos, Sep 07 2005 */
    
  • PARI
    {a(n) = binomial( 4*n + 2, n + 1) / ((2*n + 1) * (3*n + 2))}; /* Michael Somos, Mar 28 2012 */
    
  • Sage
    def a(n):
        n = ZZ(n)
        return (4*n + 2).binomial(n + 1) // ((2*n + 1) * (3*n + 2))
    # F. Chapoton, Aug 06 2015
    

Formula

a(n) = 2*(4*n+1)! / ((n+1)!*(3*n+2)!) = binomial(4*n+1, n+1) - 9*binomial(4*n+1, n-1).
G.f.: (2-g)*g^2 where g = 1 + x*g^4 is the g.f. of A002293. - Mark van Hoeij, Nov 10 2011
G.f.: hypergeom([1,1/2,3/4,5/4],[2,4/3,5/3],256*x/27) = 1 + 120*x/(Q(0)-120*x); Q(k) = 8*x*(2*k+1)*(4*k+3)*(4*k+5) + 3*(k+2)*(3*k+4)*(3*k+5) - 24*x*(k+2)*(2*k+3)*(3*k+4)*(3*k+5)*(4*k+7)*(4*k+9)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 25 2011
a(n) = binomial(4*n + 2, n + 1) / ((2*n + 1) * (3*n + 2)). - Michael Somos, Mar 28 2012
a(n) * (n+1) = A069271(n). - Michael Somos, Mar 28 2012
0 = F(a(n), a(n+1), ..., a(n+8)) for all n in Z where a(-1) = 3/4 and F() is a polynomial of degree 2 with integer coefficients and 29 monomials. - Michael Somos, Dec 23 2014
D-finite with recurrence: 3*(3*n+2)*(3*n+1)*(n+1)*a(n) - 8*(4*n+1)*(2*n-1)*(4*n-1)*a(n-1) = 0. - R. J. Mathar, Oct 21 2015
a(n) = Sum_{k=1..A000108(n)} k * A263191(n,k). - Alois P. Heinz, Nov 16 2015
a(n) ~ 2^(8*n+7/2) / (sqrt(Pi) * n^(5/2) * 3^(3*n+5/2)). - Vaclav Kotesovec, Feb 26 2016
E.g.f.: 3F3(1/2,3/4,5/4; 4/3,5/3,2; 256*x/27). - Ilya Gutkovskiy, Feb 01 2017
From Gheorghe Coserea, Aug 17 2017: (Start)
G.f. y(x) satisfies:
0 = x^3*y^4 + 3*x^2*y^3 + x*(8*x+3)*y^2 - (20*x-1)*y + 16*x-1.
0 = x*(256*x - 27)*deriv(y,x) - 8*x^2*y^3 - 25*x*y^2 + 4*(24*x-11)*y + 44.
(End)
From Karol A. Penson, Apr 06 2022: (Start)
a(n) = Integral_{x=0...256/27} x^n*W(x), where
W(x) = (sqrt(2)/Pi)*(h1(x) - h2(x) + h3(x)) and
h1(x) = 3F2([-6/12,-2/12, 2/12], [ 3/12, 9/12], (27*x)/256)/((x/2)^(1/2));
h2(x) = 3F2([-3/12, 1/12, 5/12], [ 6/12, 15/12], (27*x)/256)/(x^(1/4));
h3(x) = 3F2([ 3/12, 7/12, 11/12], [18/12, 21/12], (27*x)/256)/(x^(-1/4)*32).
This integral representation is unique as the solution of n-th Hausdorff power moment of the function W. Using only the definition of a(n), W(x) can be proven to be positive. W(x) is singular at x = 0 and for x > 0 is monotonically decreasing to zero at x = 256/27. (End)
a(n) = (1/27^n) * Product_{1 <= i <= j <= 3*n} (3*i + j + 3)/(3*i + j - 1). Cf. A006013. - Peter Bala, Feb 21 2023

Extensions

Edited by F. Chapoton, Feb 03 2011

A169808 Array T(n,k) read by antidiagonals: T(n,k) is the number of [n,k]-triangulations in the plane, n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 4, 5, 4, 4, 11, 14, 18, 16, 12, 28, 53, 69, 88, 78, 27, 91, 178, 295, 396, 489, 457, 82, 291, 685, 1196, 1867, 2503, 3071, 2938, 228, 1004, 2548, 5051, 8385, 12560, 16905, 20667, 20118, 733, 3471, 9876, 21018, 38078, 60736, 89038, 119571, 146381, 144113
Offset: 0

Views

Author

N. J. A. Sloane, May 25 2010

Keywords

Comments

"A closed bounded region in the plane divided into triangular regions with k+3 vertices on the boundary and n internal vertices is said to be a triangular map of type [n,k]." It is a [n,k]-triangulation if there are no multiple edges.
T(n,k) is the number of floor plan arrangements represented by 3-connected trivalent maps with n internal rooms and k+3 rooms adjacent to the outside.
"... may be evaluated from the results given by Brown."
The initial terms of this sequence can also be computed using the tool "plantri", in particular the command "./plantri -u -v -P -c2m2 [n]" will compute values for a diagonal. The '-c2' and '-m2' options indicate graphs must be biconnected and with minimum vertex degree 2. - Andrew Howroyd, Feb 22 2021

Examples

			Array begins:
============================================================
n\k |    0     1      2      3       4        5        6
----+-------------------------------------------------------
  0 |    1     1      1      3       4       12       27 ...
  1 |    1     2      4     11      28       91      291 ...
  2 |    1     5     14     53     178      685     2548 ...
  3 |    4    18     69    295    1196     5051    21018 ...
  4 |   16    88    396   1867    8385    38078   169918 ...
  5 |   78   489   2503  12560   60736   290595  1367374 ...
  6 |  457  3071  16905  89038  451613  2251035 11025626 ...
  7 | 2938 20667 119571 652198 3429943 17658448 89328186 ...
  ...
		

References

  • C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.

Crossrefs

Columns k=0..3 are A002713, A005500, A005501, A005502.
Rows n=0..2 are A000207, A005503, A005504.
Antidiagonal sums give A005027.
Cf. A146305 (rooted), A169809 (achiral), A262586 (oriented).

Programs

Formula

T(n,k) = (A262586(n,k) + A169809(n,k)) / 2. - Andrew Howroyd, Feb 22 2021

Extensions

Edited by Andrew Howroyd, Feb 22 2021
a(29) corrected and terms a(36) and beyond from Andrew Howroyd, Feb 22 2021

A169809 Array T(n,k) read by antidiagonals: T(n,k) is the number of [n,k]-triangulations in the plane that have reflection symmetry, n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 3, 4, 3, 2, 6, 7, 10, 8, 5, 8, 18, 19, 29, 23, 5, 18, 26, 52, 57, 86, 68, 14, 23, 68, 82, 166, 176, 266, 215, 14, 56, 91, 220, 270, 524, 557, 844, 680, 42, 70, 248, 321, 769, 890, 1722, 1806, 2742, 2226, 42, 180, 318, 872, 1151, 2568, 2986, 5664, 5954, 9032, 7327
Offset: 0

Views

Author

N. J. A. Sloane, May 25 2010

Keywords

Comments

"A closed bounded region in the plane divided into triangular regions with k+3 vertices on the boundary and n internal vertices is said to be a triangular map of type [n,k]." It is a [n,k]-triangulation if there are no multiple edges.
"... may be evaluated from the results given by Brown."

Examples

			Array begins:
====================================================
n\k |   0   1    2    3     4     5     6      7
----+-----------------------------------------------
  0 |   1   1    1    2     2     5     5     14 ...
  1 |   1   2    3    6     8    18    23     56 ...
  2 |   1   4    7   18    26    68    91    248 ...
  3 |   3  10   19   52    82   220   321    872 ...
  4 |   8  29   57  166   270   769  1151   3296 ...
  5 |  23  86  176  524   890  2568  4020  11558 ...
  6 |  68 266  557 1722  2986  8902 14197  42026 ...
  7 | 215 844 1806 5664 10076 30362 49762 148208 ...
  ...
		

References

  • C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.

Crossrefs

Columns k=0..3 are A002712, A005505, A005506, A005507.
Rows n=0..2 are A208355, A005508, A005509.
Antidiagonal sums give A005028.
Cf. A146305 (rooted), A169808 (unrooted), A262586 (oriented).

Programs

Extensions

Edited and terms a(36) and beyond from Andrew Howroyd, Feb 22 2021

A341856 Array read by antidiagonals: T(n,k) is the number of rooted strong triangulations of a disk with n interior nodes and 3+k nodes on the boundary.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 1, 6, 13, 0, 1, 10, 36, 68, 0, 1, 15, 80, 228, 399, 0, 1, 21, 155, 610, 1518, 2530, 0, 1, 28, 273, 1410, 4625, 10530, 16965, 0, 1, 36, 448, 2933, 12165, 35322, 75516, 118668, 0, 1, 45, 696, 5628, 28707, 102548, 272800, 556512, 857956
Offset: 0

Views

Author

Andrew Howroyd, Feb 23 2021

Keywords

Comments

A strong triangulation is one in which no interior edge joins two nodes on the boundary. Except for the single triangle which is enumerated by T(0,0) these are the 3-connected triangulations.

Examples

			Array begins:
=======================================================
n\k |    0     1     2      3      4      5       6
----+--------------------------------------------------
  0 |    1     0     0      0      0      0       0 ...
  1 |    1     1     1      1      1      1       1 ...
  2 |    3     6    10     15     21     28      36 ...
  3 |   13    36    80    155    273    448     696 ...
  4 |   68   228   610   1410   2933   5628   10128 ...
  5 |  399  1518  4625  12165  28707  62230  125928 ...
  6 | 2530 10530 35322 102548 267162 638624 1422204 ...
  ...
		

Crossrefs

Columns k=0..3 are A000260, A242136, A341917, A341918.
Antidiagonal sums give A341919.
Cf. A146305 (not necessarily strong triangulations), A210664, A341923, A342053.

Programs

  • PARI
    T(n,m)=if(m==0, 2*(4*n+1)!/((3*n+2)!*(n+1)!), (3*(m+2)!*(m-1)!/(3*n+3*m+3)!)*sum(j=0, min(m,n-1), (4*n+3*m-j+1)!*(m+j+2)*(m-3*j)/(j!*(j+1)!*(m-j)!*(m-j+2)!*(n-j-1)!)))

Formula

T(n,0) = A000260(n) = 2*(4*n+1)!/((3*n+2)!*(n+1)!).
T(n,m) = (3*(m+2)!*(m-1)!/(3*n+3*m+3)!) * Sum_{j=0..min(m,n-1)} (4*n+3*m-j+1)!*(m+j+2)*(m-3*j)/(j!*(j+1)!*(m-j)!*(m-j+2)!*(n-j-1)!) for m > 0.

A210696 Triangulations of the disk, G_{1,n}.

Original entry on oeis.org

1, 2, 5, 16, 48, 164, 559, 1952, 6872, 24520, 88006, 318444, 1158944, 4241688, 15598973, 57620596, 213680472, 795270644, 2969483214, 11121038100, 41763779054, 157235683780, 593355907790, 2243975358216, 8503404201874, 32283434698908, 122779218918272, 467713035691608
Offset: 0

Views

Author

R. J. Mathar, Mar 30 2012

Keywords

Comments

This corrects a typographical error in A005497(6).

Crossrefs

Row n=1 of A262586.

Programs

  • Maple
    BrownE := proc(r,n,m)
        local j,s,p ;
        if r < 1 then
            return 0 ;
        elif r = 1 then
            return A146305(n,m) ;
        elif r = 2 then
            j := n mod 2 ; s := floor(n/2) ;
            if type(m,'even') then
                return 0 ;
            end if;
            p := (m+1)/2 ;
            if p > 0 and s >= 0 then
                return 2*(2*p)!*(4*s+2*p+2*j-1)!/p!/(p-1)!/s!/(3*s+2*p+2*j)! ;
            else
                return 0 ;
            end if;
        elif r =3 and (n mod 3) =0 and (m mod 3) = 0 then
            s := n/3 ; p := m/3 ;
            if p >= 0 and s >= 0 then
                return (2*p+1)!*(4*s+2*p)!/p!/p!/s!/(3*s+2*p+1)! ;
            else
                return 0 ;
            end if;
        elif r >= 3 then
            if ((n-1) mod r) =0 and ((m+3) mod r) =0 then
                s := (n-1)/r ; p := (m+3)/r-1 ;
                if p>=0 and s>=0 then
                return (2*p+2)!*(4*s+2*p+1)!/p!/(p+1)!/s!/(3*s+2*p+2)! ;
                else
                    return 0 ;
                end if;
            else
                return 0 ;
            end if;
        else
            return 0 ;
        end if;
    end proc:
    BrownG := proc(n,m)
        add( numtheory[phi](s)* BrownE(s,n,m), s = numtheory[divisors](m+3) ) ;
        %/(m+3) ;
    end proc:
    A210696 := proc(n)
        BrownG(1,n) ;
    end proc:
    seq(A210696(n),n=0..25) ;
  • Mathematica
    (* See the link section. *)

Extensions

a(26) onwards from Andrew Howroyd, Nov 23 2024

A197271 a(n) = (10 / ((3*n+1)*(3*n+2))) * binomial(4*n, n).

Original entry on oeis.org

5, 2, 5, 20, 100, 570, 3542, 23400, 161820, 1159400, 8544965, 64448228, 495508780, 3872033900, 30680401500, 246041115600, 1993987498284, 16310419381080, 134519771966180, 1117653277802000, 9347742311507600, 78652006531467930, 665393840873409150, 5657273782416664200, 48318619683648190500
Offset: 0

Views

Author

Peter Bala, Oct 12 2011

Keywords

Comments

A combinatorial interpretation for this sequence in terms of a family of plane trees is given in [Schaeffer, Corollary 2 with k = 4].
For n>=1, the number of rooted strict triangulations of a square with n-1 internal vertices, where a triangulation is "strict" if no two distinct edges have the same pair of ends. See equation (1) in [Tutte 1980] (who references [Brown 1964]) for the number of rooted strict near-triangulations of type (n,m), with m=1. - Noam Zeilberger, Jan 04 2023

Crossrefs

Column m=1 of A146305.

Programs

  • Mathematica
    Table[10/((3n+1)(3n+2)) Binomial[4n,n],{n,0,30}] (* Harvey P. Dale, Jan 27 2015 *)

Formula

a(n) = 10/((3*n+1)*(3*n+2))*binomial(4*n,n).
a(n) = A000260(n) * 5*(n+1)/(4*n+1). - Noam Zeilberger, May 20 2019
a(n) ~ c*(256/27)^n / n^(5/2), where c = (10/9)*sqrt(2/(3*Pi)) = 0.511843.... - Peter Luschny, Jan 05 2023
D-finite with recurrence 3*n*(3*n+2)*(3*n+1)*a(n) -8*(4*n-3)*(2*n-1)*(4*n-1)*a(n-1)=0. - R. J. Mathar, Jul 31 2024

A341853 Number of triangulations of a fixed pentagon with n internal nodes.

Original entry on oeis.org

5, 21, 105, 595, 3675, 24150, 166257, 1186680, 8717940, 65572325, 502957455, 3922142574, 31021294850, 248377859100, 2010068042625, 16421073515280, 135277629836412, 1122788441510820, 9381874768828100, 78871575753345375, 666727830129370275
Offset: 0

Views

Author

Andrew Howroyd, Feb 21 2021

Keywords

Comments

These may be called rooted [n,2] triangulations.

Examples

			The a(0) = 5 triangulations correspond with the dissections of a pentagon by nonintersecting diagonals into 3 triangles. Although there is only one essentially different dissection, each rotation is counted separately here.
		

Crossrefs

Column k=2 of A146305.

Programs

  • Mathematica
    Array[210 Binomial[4 # + 5, #]/((3 # + 6)*(3 # + 7)) &, 21, 0] (* Michael De Vlieger, Feb 22 2021 *)
  • PARI
    a(n) = {210*binomial(4*n+5, n)/((3*n+6)*(3*n+7))}

Formula

a(n) = 210*binomial(4*n+5, n)/((3*n+6)*(3*n+7)).
D-finite with recurrence 3*n*(3*n+5)*(3*n+7)*(n+2)*a(n) -8*(4*n+5)*(2*n+1)*(4*n+3)*(n+1)*a(n-1)=0. - R. J. Mathar, Jul 31 2024

A341854 Number of triangulations of a fixed hexagon with n internal nodes.

Original entry on oeis.org

14, 84, 504, 3192, 21252, 147420, 1057224, 7791168, 58727214, 451137596, 3521923944, 27878644080, 223353322920, 1808402199660, 14778966163752, 121784464712064, 1011022286145816, 8449458780183120, 71042841567457760, 600615322603936920, 5103281457829103220
Offset: 0

Views

Author

Andrew Howroyd, Feb 21 2021

Keywords

Comments

These may be called rooted [n,3] triangulations.

Crossrefs

Column k=3 of A146305.

Programs

  • Mathematica
    Array[1008 Binomial[4 # + 7, #]/((3 # + 8) (3 # + 9)) &, 21, 0] (* Michael De Vlieger, Feb 22 2021 *)
  • PARI
    a(n) = {1008*binomial(4*n+7, n)/((3*n+8)*(3*n+9))}

Formula

a(n) = 1008*binomial(4*n+7, n)/((3*n+8)*(3*n+9)).
D-finite with recurrence 3*(3*n+7)*(n+3)*(3*n+8)*a(n) +(-445*n^3-2164*n^2-3473*n-1838)*a(n-1) +56*(4*n+1)*(2*n+1)*(4*n+3)*a(n-2)=0. - R. J. Mathar, Jul 31 2024
D-finite with recurrence 3*n*(3*n+7)*(n+3)*(3*n+8)*a(n) -8*(4*n+5)*(2*n+3)*(4*n+7)*(n+1)*a(n-1)=0. - R. J. Mathar, Jul 31 2024
Showing 1-8 of 8 results.