cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A146305 Array T(n,m) = 2*(2m+3)!*(4n+2m+1)!/(m!*(m+2)!*n!*(3n+2m+3)!) read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 3, 5, 5, 13, 20, 21, 14, 68, 100, 105, 84, 42, 399, 570, 595, 504, 330, 132, 2530, 3542, 3675, 3192, 2310, 1287, 429, 16965, 23400, 24150, 21252, 16170, 10296, 5005, 1430, 118668, 161820, 166257, 147420, 115500, 78936, 45045, 19448, 4862, 857956
Offset: 0

Views

Author

R. J. Mathar, Oct 29 2008

Keywords

Comments

T(n,m) is the number of rooted nonseparable (2-connected) triangulations of the disk with n internal nodes and 3 + m nodes on the external face. The triangulation has 2*n + m + 1 triangles and 3*(n+1) + 2*m edges. - Andrew Howroyd, Feb 21 2021

Examples

			The array starts at row n=0 and column m=0 as
.....1......2.......5......14.......42.......132
.....1......5......21......84......330......1287
.....3.....20.....105.....504.....2310.....10296
....13....100.....595....3192....16170.....78936
....68....570....3675...21252...115500....602316
...399...3542...24150..147420...844074...4628052
..2530..23400..166257.1057224..6301680..35939904
.16965.161820.1186680.7791168.47948670.282285432
		

Crossrefs

Columns m=0..3 are A000260, A197271(n+1), A341853, A341854.
Rows n=0..2 are A000108(n+1), A002054(n+1) and A000917.
Antidiagonal sums are A000260(n+1).
Cf. A169808 (unrooted), A169809 (achiral), A262586 (oriented).

Programs

  • Maple
    A146305 := proc(n,m)
        2*(2*m+3)!*(4*n+2*m+1)!/m!/(m+2)!/n!/(3*n+2*m+3)! ;
    end proc:
    for d from 0 to 13 do
        for m from 0 to d do
            printf("%d,", A146305(d-m,m)) ;
        end do:
    end do:
  • Mathematica
    T[n_, m_] := 2*(2*m+3)!*(4*n+2*m+1)!/m!/(m+2)!/n!/(3*n+2*m+3)!; Table[T[n-m, m], {n, 0, 13}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jan 06 2014, after Maple *)
  • PARI
    T(n,m)={2*(2*m+3)!*(4*n+2*m+1)!/(m!*(m+2)!*n!*(3*n+2*m+3)!)} \\ Andrew Howroyd, Feb 21 2021

A197272 a(n) = 6/((4*n+1)*(4*n+2))*binomial(5*n,n).

Original entry on oeis.org

3, 1, 3, 15, 95, 690, 5481, 46376, 411255, 3781635, 35791910, 346821930, 3427001253, 34425730640, 350732771160, 3617153918640, 37703805776935, 396716804816265, 4209161209968825, 44993046668984145, 484176486362971710
Offset: 0

Views

Author

Peter Bala, Oct 12 2011

Keywords

Comments

A combinatorial interpretation for this sequence in terms of a family of plane trees is given in [Schaeffer, Corollary 2 with k = 5].
A combinatorial interpretation for this sequence in terms of a family of four-dimensional stacked spheres is given in [Thorlieffson, Table 3 in Appendix B]. - Robert A. Russell, Mar 15 2012

Crossrefs

Programs

  • Maple
    A197272 := proc(n)
        6/((4*n+1)*(4*n+2))*binomial(5*n,n)
    end proc:
    seq(A197272(n),n=0..40) ; # R. J. Mathar, Mar 29 2023
  • Mathematica
    Table[6/((4n+1)(4n+2)) Binomial[5n,n],{n,0,20}] (* Harvey P. Dale, Aug 08 2013 *)

Formula

a(n) = 6/((4*n+1)*(4*n+2))*binomial(5*n,n).
D-finite with recurrence 8*n*(4*n+1)*(2*n+1)*(4*n-1)*a(n) -5*(5*n-4)*(5*n-3)*(5*n-2)*(5*n-1)*a(n-1)=0. - R. J. Mathar, Mar 29 2023

A242136 Number of strong triangulations of a fixed square with n interior vertices.

Original entry on oeis.org

0, 1, 6, 36, 228, 1518, 10530, 75516, 556512, 4194801, 32224114, 251565996, 1991331720, 15953808780, 129171585690, 1055640440268, 8698890336576, 72215877581844, 603532770013080, 5074488683389840
Offset: 0

Views

Author

David Callan, Aug 15 2014

Keywords

Comments

A strong triangulation is one in which no interior edge joins two vertices of the square (see W. G. Brown reference).
If the restriction "strong" is dropped, the counting sequence is A197271 (shifted left).

Examples

			The 6 triangulations for n=2 are as follows. Four have a central vertex joined to all 4 vertices of the square creating 4 triangular regions, one of which contains the second interior vertex. In these 4 cases, the central vertex has degree 5, the other interior  vertex has degree 3. In the other 2 triangulations, both interior vertices have degree 4, an opposite pair a, c of vertices of the square both have degree 3 (so 1 interior edge), and the other 2 opposite vertices have degree 4.
		

Crossrefs

Column k=1 of A341856.
Cf. A000260 for triangulations of a triangle.

Programs

  • Maple
    A242136:=n->24*binomial(4*n+3,n-1)/((3*n+5)*(n+2)): seq(A242136(n), n=0..30); # Wesley Ivan Hurt, Aug 16 2014
  • Mathematica
    Table[24 Binomial[4n+3,n-1]/((3n+5)(n+2)), {n, 0, 15}]

Formula

a(n) = 72 * (4*n+3)!/((3*n+6)!*(n-1)!) = 24 * binomial(4*n+3,n-1)/((3*n+5)*(n+2)) = binomial(4*n+3,n-1) - 5 * binomial(4*n+3,n-2) + 6 * binomial(4*n+3,n-3).

A362103 a(n) = K(4,n), where K(M,n) = 2*(2*M+3)!*(4*n+2*M+1)!/((M+2)!*M!*n!*(3*n+2*M+3)!).

Original entry on oeis.org

42, 330, 2310, 16170, 115500, 844074, 6301680, 47948670, 370952010, 2911858950, 23150207388, 186127769100, 1511405695800, 12382019142570, 102244420000800, 850316530400304, 7117336900424520, 59922942071869800, 507204902536897950
Offset: 0

Views

Author

N. J. A. Sloane, Apr 13 2023

Keywords

Crossrefs

A362104 a(n) = K(5,n), where K(M,n) = 2*(2*M+3)!*(4*n+2*M+1)!/((M+2)!*M!*n!*(3*n+2*M+3)!).

Original entry on oeis.org

132, 1287, 10296, 78936, 602316, 4628052, 35939904, 282285432, 2241753228, 17986968714, 145691385840, 1190292863760, 9801223583580, 81284313900636, 678513446252928, 5697583720939968, 48104529963993360, 408179183470170255, 3479470856108521560
Offset: 0

Views

Author

N. J. A. Sloane, Apr 13 2023

Keywords

Crossrefs

Showing 1-5 of 5 results.