cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A000207 Number of inequivalent ways of dissecting a regular (n+2)-gon into n triangles by n-1 non-intersecting diagonals under rotations and reflections; also the number of (unlabeled) maximal outerplanar graphs on n+2 vertices.

Original entry on oeis.org

1, 1, 1, 3, 4, 12, 27, 82, 228, 733, 2282, 7528, 24834, 83898, 285357, 983244, 3412420, 11944614, 42080170, 149197152, 531883768, 1905930975, 6861221666, 24806004996, 90036148954, 327989004892, 1198854697588, 4395801203290, 16165198379984, 59609171366326, 220373278174641
Offset: 1

Views

Author

Keywords

Comments

Also a(n) is the number of hexaflexagons of order n+2. - Mike Godfrey (m.godfrey(AT)umist.ac.uk), Feb 25 2002 (see the Kosters paper).
Number of normally non-isomorphic realizations of the associahedron of type II with dimension n in Ceballos et al. - Tom Copeland, Oct 19 2011
Number of polyforms with n cells in the hyperbolic tiling with Schläfli symbol {3,oo}, not distinguishing enantiomorphs. - Thomas Anton, Jan 16 2019
A stereographic projection of the {3,oo} tiling on the Poincaré disk can be obtained via the Christensson link. - Robert A. Russell, Jan 20 2024
A maximal outerplanar graph (MOP) has a plane embedding with all vertices on the exterior region and interior regions triangles. - Allan Bickle, Feb 25 2024

Examples

			E.g., a square (4-gon, n=2) could have either diagonal drawn, C(3)=2, but with essentially only one result. A pentagon (5-gon, n=3) gives C(4)=5, but they each have 2 diags emanating from 1 of the 5 vertices and are essentially the same. A hexagon can have a nuclear disarmament sign (6 ways), an N (3 ways and 3 reflections) or a triangle (2 ways) of diagonals, 6 + 6 + 2 = 14 = C(5), but only 3 essentially different. - _R. K. Guy_, Mar 06 2004
G.f. = x + x^2 + x^3 + 3*x^4 + 4*x^5 + 12*x^6 + 27*x^7 + 82*x^8 + ...
		

References

  • L. W. Beineke and R. E. Pippert, Enumerating labeled k-dimensional trees and ball dissections, pp. 12-26 of Proceedings of Second Chapel Hill Conference on Combinatorial Mathematics and Its Applications, University of North Carolina, Chapel Hill, 1970. Reprinted in Math. Annalen, 191 (1971), 87-98.
  • Cameron, Peter J. Some treelike objects. Quart. J. Math. Oxford Ser. (2) 38 (1987), no. 150, 155--183. MR0891613 (89a:05009). See pp. 155, 163, but note that the formulas on p. 163, lines 5 and 6, contain typos. See the correct formulas given here. - N. J. A. Sloane, Apr 18 2014
  • B. N. Cyvin, E. Brendsdal, J. Brunvoll and S. J. Cyvin, Isomers of polyenes attached to benzene, Croatica Chemica Acta, 68 (1995), 63-73.
  • S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., 35 (1995) 743-751.
  • C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
  • R. K. Guy, "Dissecting a polygon into triangles," Bull. Malayan Math. Soc., Vol. 5, pp. 57-60, 1958.
  • R. K. Guy, Dissecting a polygon into triangles, Research Paper #9, Math. Dept., Univ. Calgary, 1967.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 79, Table 3.5.1 (the entries for n=16 and n=21 appear to be incorrect).
  • M. Kosters, A theory of hexaflexagons, Nieuw Archief Wisk., 17 (1999), 349-362.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • P. K. Stockmeyer, The charm bracelet problem and its applications, pp. 339-349 of Graphs and Combinatorics (Washington, Jun 1973), Ed. by R. A. Bari and F. Harary. Lect. Notes Math., Vol. 406. Springer-Verlag, 1974.

Crossrefs

Column k=3 of A295260.
A row or column of the array in A169808.
Polyominoes: A001683(n+2) (oriented), A369314 (chiral), A208355(n-1) (achiral), A005036 {4,oo}, A007173 {3,3,oo}.
Cf. A097998, A097999, A098000 (labeled outerplanar graphs).
Cf. A111563, A111564, A111758, A111759, A111757 (unlabeled outerplanar graphs).

Programs

  • Maple
    A000108 := proc(n) if n >= 0 then binomial(2*n,n)/(n+1) ; else 0; fi; end:
    A000207 := proc(n) option remember: local k, it1, it2;
    if n mod 2 = 0 then k := n/2+2 else k := (n+3)/2 fi:
    if n mod 2 <> 0 then it1 := 0 else it1 := 1 fi:
    if (n+2) mod 3 <> 0 then it2 := 0 else it2 := 1 fi:
    RETURN(A000108(n)/(2*n+4) + it1*A000108(n/2)/4 + A000108(k-2)/2 + it2*A000108((n-1)/3)/3)
    end:
    seq(A000207(n),n=1..30) ; # (Revised Maple program from R. J. Mathar, Apr 19 2009)
    A000207 := proc(n) option remember: local k,it1,it2; if n mod 2 = 0 then k := n/2+1 else k := (n+1)/2 fi: if n mod 2 <> 0 then it1 := 0 else it1 := 1 fi: if n mod 3 <> 0 then it2 := 0 else it2 := 1 fi: RETURN(A000108(n-2)/(2*n) + it1*A000108(n/2+1-2)/4 + A000108(k-2)/2 + it2*A000108(n/3+1-2)/3) end:
    A000207 := n->(A000108(n)/(n+2)+A000108(floor(n/2))*((1+(n+1 mod 2) /2)))/2+`if`(n mod 3=1,A000108(floor((n-1)/3))/3,0); # Peter Luschny, Apr 19 2009 and M. F. Hasler, Apr 19 2009
    G:=(12*(1+x-2*x^2)+(1-4*x)^(3/2)-3*(3+2*x)*(1-4*x^2)^(1/2)-4*(1-4*x^3)^(1/2))/24/x^2: Gser:=series(G,x=0,35): seq(coeff(Gser,x^n),n=1..31); # Emeric Deutsch, Dec 19 2004
  • Mathematica
    p=3; Table[(Binomial[(p-1)n, n]/(((p-2)n+1)((p-2)n+2)) + If[OddQ[n], If[OddQ[p], Binomial[(p-1)n/2, (n-1)/2]/n, (p+1)Binomial[((p-1)n-1)/2, (n-1)/2]/((p-2)n+2)], 3Binomial[(p-1)n/2, n/2]/((p-2)n+2)]+Plus @@ Map[EulerPhi[ # ]Binomial[((p-1)n+1)/#, (n-1)/# ]/((p-1)n+1)&, Complement[Divisors[GCD[p, n-1]], {1, 2}]])/2, {n, 1, 20}] (* Robert A. Russell, Dec 11 2004 *)
    a[n_] := (CatalanNumber[n]/(n+2) + CatalanNumber[ Quotient[n, 2]] *((1 + Mod[n-1, 2]/2)))/2 + If[Mod[n, 3] == 1, CatalanNumber[ Quotient[n-1, 3]]/3, 0] ; Table[a[n], {n, 1, 28}] (* Jean-François Alcover, Sep 08 2011, after PARI *)
  • PARI
    A000207(n)=(A000108(n)/(n+2)+A000108(n\2)*if(n%2,1,3/2))/2+if(n%3==1,A000108(n\3)/3) \\ M. F. Hasler, Apr 19 2009

Formula

a(n) = C(n)/(2*n) + C(n/2+1)/4 + C(k)/2 + C(n/3+1)/3 where C(n) = A000108(n-2) if n is an integer, 0 otherwise and k = (n+1)/2 if n is odd, k = n/2+1 if n is even. Thus C(2), C(3), C(4), C(5), ... are 1, 1, 2, 5, ...
G.f.: (12*(1+x-2*x^2) + (1-4*x)^(3/2) - 3*(3+2*x)*(1-4*x^2)^(1/2) - 4*(1-4*x^3)^(1/2))/(24*x^2). - Emeric Deutsch, Dec 19 2004, from the S. J. Cyvin et al. reference.
a(n) ~ A000108(n)/(2*n+4) ~ 4^n / (2 sqrt(n Pi)*(n + 1)*(n + 2)). - M. F. Hasler, Apr 19 2009
a(n) = A001683(n+2) - A369314(n) = (A001683(n+2) + A208355(n-1)) / 2 = A369314(n) + A208355(n-1). - Robert A. Russell, Jan 19 2024
Beineke and Pippert have an explicit formula with six cases (based on the value of n mod 6). - Allan Bickle, Feb 25 2024

Extensions

More terms from James Sellers, Jul 10 2000

A005500 Number of unrooted triangulations of a quadrilateral with n internal nodes.

Original entry on oeis.org

1, 2, 5, 18, 88, 489, 3071, 20667, 146381, 1072760, 8071728, 61990477, 484182622, 3835654678, 30757242535, 249255692801, 2038827903834, 16815060576958, 139706974995635, 1168468902294726, 9831504782276593, 83174244225508659, 707159273362126228, 6039827641569969225
Offset: 0

Views

Author

Keywords

Comments

These are also called [n,1]-triangulations.
Graphs can be enumerated and counted using the tool "plantri", in particular the command "./plantri -s -P4 -c2m2 [n]". - Manfred Scheucher, Mar 08 2018

References

  • C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=1 of A169808.

Formula

a(n) = (A005505(n) + A002710(n))/2. - Max Alekseyev, Oct 29 2012

Extensions

Edited by Max Alekseyev, Oct 29 2012
a(7)-a(12) from Manfred Scheucher, Mar 08 2018
Name clarified and terms a(13) and beyond from Andrew Howroyd, Feb 22 2021

A262586 Square array T(n,m) (n>=0, m>=0) read by antidiagonals downwards giving number of rooted triangulations of type [n,m] up to orientation-preserving isomorphisms.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 4, 5, 6, 5, 6, 16, 21, 26, 24, 19, 48, 88, 119, 147, 133, 49, 164, 330, 538, 735, 892, 846, 150, 559, 1302, 2310, 3568, 4830, 5876, 5661, 442, 1952, 5005, 9882, 16500, 24596, 33253, 40490, 39556, 1424, 6872, 19504, 41715, 75387, 120582, 176354, 237336, 290020, 286000, 4522
Offset: 0

Views

Author

N. J. A. Sloane, Oct 20 2015

Keywords

Examples

			Array begins:
 ==============================================================
 n\k |    0     1      2       3       4        5         6 ...
 ----+---------------------------------------------------------
   0 |    1     1      1       4       6       19        49 ...
   1 |    1     2      5      16      48      164       559 ...
   2 |    1     6     21      88     330     1302      5005 ...
   3 |    5    26    119     538    2310     9882     41715 ...
   4 |   24   147    735    3568   16500    75387    338685 ...
   5 |  133   892   4830   24596  120582   578622   2730728 ...
   6 |  846  5876  33253  176354  900240  4493168  22037055 ...
   7 | 5661 40490 237336 1298732 6849810 35286534 178606610 ...
   ...
The first few antidiagonals are:
  1,
  1,1,
  1,2,1,
  4,5,6,5,
  6,16,21,26,24,
  19,48,88,119,147,133,
  49,164,330,538,735,892,846,
  ...
		

Crossrefs

Columns 0..2 are A002709, A002710, A002711.
Rows 0..3 are A001683, A210696, A005498, A005499.
Antidiagonal sums are A341855.
Cf. A169808 (unoriented), A169809 (achiral).

Programs

  • Maple
    A262586 := proc(n,m)
        BrownG(n,m) ; # procedure in A210696
    end proc:
    for d from 0 to 12 do
        for n from 0 to d do
            printf("%d,",A262586(n,d-n)) ;
        end do:
    end do: # R. J. Mathar, Oct 21 2015
  • Mathematica
    (* See LINKS section. *)
  • PARI
    \\ See Links in A169808 for PARI program file.
    { for(n=0, 7, for(k=0, 7, print1(OrientedTriangs(n,k), ", ")); print) } \\ Andrew Howroyd, Nov 23 2024

Formula

Brown (Eq. 6.3) gives a formula.

A169809 Array T(n,k) read by antidiagonals: T(n,k) is the number of [n,k]-triangulations in the plane that have reflection symmetry, n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 3, 4, 3, 2, 6, 7, 10, 8, 5, 8, 18, 19, 29, 23, 5, 18, 26, 52, 57, 86, 68, 14, 23, 68, 82, 166, 176, 266, 215, 14, 56, 91, 220, 270, 524, 557, 844, 680, 42, 70, 248, 321, 769, 890, 1722, 1806, 2742, 2226, 42, 180, 318, 872, 1151, 2568, 2986, 5664, 5954, 9032, 7327
Offset: 0

Views

Author

N. J. A. Sloane, May 25 2010

Keywords

Comments

"A closed bounded region in the plane divided into triangular regions with k+3 vertices on the boundary and n internal vertices is said to be a triangular map of type [n,k]." It is a [n,k]-triangulation if there are no multiple edges.
"... may be evaluated from the results given by Brown."

Examples

			Array begins:
====================================================
n\k |   0   1    2    3     4     5     6      7
----+-----------------------------------------------
  0 |   1   1    1    2     2     5     5     14 ...
  1 |   1   2    3    6     8    18    23     56 ...
  2 |   1   4    7   18    26    68    91    248 ...
  3 |   3  10   19   52    82   220   321    872 ...
  4 |   8  29   57  166   270   769  1151   3296 ...
  5 |  23  86  176  524   890  2568  4020  11558 ...
  6 |  68 266  557 1722  2986  8902 14197  42026 ...
  7 | 215 844 1806 5664 10076 30362 49762 148208 ...
  ...
		

References

  • C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.

Crossrefs

Columns k=0..3 are A002712, A005505, A005506, A005507.
Rows n=0..2 are A208355, A005508, A005509.
Antidiagonal sums give A005028.
Cf. A146305 (rooted), A169808 (unrooted), A262586 (oriented).

Programs

Extensions

Edited and terms a(36) and beyond from Andrew Howroyd, Feb 22 2021

A146305 Array T(n,m) = 2*(2m+3)!*(4n+2m+1)!/(m!*(m+2)!*n!*(3n+2m+3)!) read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 3, 5, 5, 13, 20, 21, 14, 68, 100, 105, 84, 42, 399, 570, 595, 504, 330, 132, 2530, 3542, 3675, 3192, 2310, 1287, 429, 16965, 23400, 24150, 21252, 16170, 10296, 5005, 1430, 118668, 161820, 166257, 147420, 115500, 78936, 45045, 19448, 4862, 857956
Offset: 0

Views

Author

R. J. Mathar, Oct 29 2008

Keywords

Comments

T(n,m) is the number of rooted nonseparable (2-connected) triangulations of the disk with n internal nodes and 3 + m nodes on the external face. The triangulation has 2*n + m + 1 triangles and 3*(n+1) + 2*m edges. - Andrew Howroyd, Feb 21 2021

Examples

			The array starts at row n=0 and column m=0 as
.....1......2.......5......14.......42.......132
.....1......5......21......84......330......1287
.....3.....20.....105.....504.....2310.....10296
....13....100.....595....3192....16170.....78936
....68....570....3675...21252...115500....602316
...399...3542...24150..147420...844074...4628052
..2530..23400..166257.1057224..6301680..35939904
.16965.161820.1186680.7791168.47948670.282285432
		

Crossrefs

Columns m=0..3 are A000260, A197271(n+1), A341853, A341854.
Rows n=0..2 are A000108(n+1), A002054(n+1) and A000917.
Antidiagonal sums are A000260(n+1).
Cf. A169808 (unrooted), A169809 (achiral), A262586 (oriented).

Programs

  • Maple
    A146305 := proc(n,m)
        2*(2*m+3)!*(4*n+2*m+1)!/m!/(m+2)!/n!/(3*n+2*m+3)! ;
    end proc:
    for d from 0 to 13 do
        for m from 0 to d do
            printf("%d,", A146305(d-m,m)) ;
        end do:
    end do:
  • Mathematica
    T[n_, m_] := 2*(2*m+3)!*(4*n+2*m+1)!/m!/(m+2)!/n!/(3*n+2*m+3)!; Table[T[n-m, m], {n, 0, 13}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jan 06 2014, after Maple *)
  • PARI
    T(n,m)={2*(2*m+3)!*(4*n+2*m+1)!/(m!*(m+2)!*n!*(3*n+2*m+3)!)} \\ Andrew Howroyd, Feb 21 2021

A342053 Array read by antidiagonals: T(n,k) is the number of unrooted 3-connected triangulations of a disk with n interior nodes and k nodes on the boundary, n >= 1, k >= 3.

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 1, 2, 8, 16, 1, 3, 12, 38, 78, 1, 3, 20, 73, 219, 457, 1, 4, 27, 140, 503, 1404, 2938, 1, 4, 39, 235, 1089, 3661, 9714, 20118, 1, 5, 51, 392, 2149, 8796, 27715, 70454, 144113, 1, 5, 68, 610, 4050, 19419, 72204, 214664, 527235, 1065328
Offset: 1

Views

Author

Andrew Howroyd, Feb 26 2021

Keywords

Comments

For k >= 4, T(n,k) is the number of polyhedra with n+k vertices whose faces are all triangular, except one which is k-gonal.
The initial terms of this sequence can also be computed using the tool "plantri", in particular the command "./plantri -u -v -P [n]" will compute values for a diagonal.

Examples

			Array begins:
===================================================
n\k |     3     4      5      6       7       8
----+----------------------------------------------
  1 |     1     1      1      1       1       1 ...
  2 |     1     2      2      3       3       4 ...
  3 |     4     8     12     20      27      39 ...
  4 |    16    38     73    140     235     392 ...
  5 |    78   219    503   1089    2149    4050 ...
  6 |   457  1404   3661   8796   19419   40485 ....
  7 |  2938  9714  27715  72204  173779  393123 ...
  8 | 20118 70454 214664 596906 1538221 3723976 ...
  ...
		

Crossrefs

Columns k=3..6 are A002713, A058786(n+4), A342054, A342055.
Antidiagonal sums are A342056.
Cf. A169808 (2-connected), A341856 (rooted), A341923 (oriented).

Programs

  • PARI
    A342053Array(8,6) \\ See links for program.

A002713 Number of unrooted triangulations of the disk with n interior nodes and 3 nodes on the boundary.

Original entry on oeis.org

1, 1, 1, 4, 16, 78, 457, 2938, 20118, 144113, 1065328, 8068332, 62297808, 488755938, 3886672165, 31269417102, 254141551498, 2084129777764, 17228043363781, 143432427097935, 1201853492038096, 10129428318995227, 85826173629557200
Offset: 0

Views

Author

Keywords

Comments

These are also called [n,0]-triangulations.

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=0 of A169808.

Formula

a(n) = (A002709(n) + A002712(n)) / 2.

Extensions

Terms a(9) onward from Max Alekseyev, May 11 2010
Name clarified by Andrew Howroyd, Feb 24 2021

A005501 Number of unrooted triangulations of a pentagon with n internal nodes.

Original entry on oeis.org

1, 4, 14, 69, 396, 2503, 16905, 119571, 874771, 6567181, 50329363, 392328944, 3102523829, 24839151315, 201011560316, 1642124006250, 13527821578754, 112279051170871, 938188211057701, 7887160187935198, 66672792338916470, 566452703137103796, 4834838039006782636
Offset: 0

Views

Author

Keywords

Comments

These are also called [n,2]-triangulations.
Graphs can be enumerated and counted using the tool "plantri", in particular the command "./plantri -s -P5 -c2m2 [n]". - Manfred Scheucher, Mar 08 2018

References

  • C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=2 of the array in A169808.

Formula

a(n) = (A005506(n) + A002711(n))/2. - Max Alekseyev, Oct 29 2012

Extensions

a(6)-a(11) from Manfred Scheucher, Mar 08 2018
Name clarified and terms a(12) and beyond from Andrew Howroyd, Feb 22 2021

A378103 Triangle read by rows: T(n,k) is the number of n-node connected unsensed planar maps with an external face and k triangular internal faces, n >= 3, 1 <= k <= 2*n - 5.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 2, 1, 0, 0, 2, 4, 4, 5, 4, 0, 0, 2, 6, 10, 14, 14, 18, 16, 0, 0, 0, 7, 18, 35, 49, 63, 69, 88, 78, 0, 0, 0, 5, 28, 74, 131, 204, 274, 345, 396, 489, 457, 0, 0, 0, 0, 26, 126, 304, 574, 893, 1290, 1708, 2137, 2503, 3071, 2938, 0, 0, 0, 0, 13, 159, 582, 1396, 2613, 4274, 6270, 8709, 11433, 14227, 16905, 20667, 20118
Offset: 3

Views

Author

Ya-Ping Lu, Nov 16 2024

Keywords

Comments

The planar maps considered are without loops or isthmuses.
In other words, a(n) is the number of embeddings in the plane of connected bridgeless planar simple graphs with n vertices and k triangular internal faces.
The number of edges is n + k - 1.
The nonzero terms in row n range from k = floor(n/2) through 2*n-5 and, thus, the number of nonzero terms is 2n - floor(n/2) - 4 = A001651(n-2).

Examples

			Triangle begins:
n\k        1     2     3     4     5     6     7     8     9    10    11
----     ----  ----  ----  ----  ----  ----  ----  ----  ----  ----  ----
3          1
4          0     1     1
5          0     1     1     2     1
6          0     0     2     4     4     5     4
7          0     0     2     6    10    14    14    18    16
8          0     0     0     7    18    35    49    63    69    88    78
		

Crossrefs

Row sums are A377785.
Cf. A001651, A002713, A003094, A169808, A378336 (sensed), A378340 (achiral).
The final 3 terms of each row are in A002713, A005500, A005501.

Programs

Formula

T(n, 2*n-5) = A002713(n-3).
T(n,k) = (A378336(n,k) + A378340(n,k))/2.

Extensions

a(39) onwards from Andrew Howroyd, Nov 25 2024

A005027 Number of trivalent maps with n nodes.

Original entry on oeis.org

1, 2, 4, 16, 63, 328, 1933, 12633, 87466, 633015, 4717745, 35980100, 279418926, 2202903618, 17590599410, 142025760202, 1157868883224, 9520828261067, 78888071847324, 658158709983945, 5525145717439001, 46644670326913204, 395812792437224022, 3374572617006946447
Offset: 3

Views

Author

Keywords

References

  • C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Antidiagonal sums of array in A169808.

Programs

Formula

a(n) = (A005028(n) + A341855(n))/2. - Andrew Howroyd, Feb 22 2021

Extensions

a(10) corrected and terms a(11) and beyond from Andrew Howroyd, Feb 22 2021
Showing 1-10 of 14 results. Next