cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A341856 Array read by antidiagonals: T(n,k) is the number of rooted strong triangulations of a disk with n interior nodes and 3+k nodes on the boundary.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 1, 6, 13, 0, 1, 10, 36, 68, 0, 1, 15, 80, 228, 399, 0, 1, 21, 155, 610, 1518, 2530, 0, 1, 28, 273, 1410, 4625, 10530, 16965, 0, 1, 36, 448, 2933, 12165, 35322, 75516, 118668, 0, 1, 45, 696, 5628, 28707, 102548, 272800, 556512, 857956
Offset: 0

Views

Author

Andrew Howroyd, Feb 23 2021

Keywords

Comments

A strong triangulation is one in which no interior edge joins two nodes on the boundary. Except for the single triangle which is enumerated by T(0,0) these are the 3-connected triangulations.

Examples

			Array begins:
=======================================================
n\k |    0     1     2      3      4      5       6
----+--------------------------------------------------
  0 |    1     0     0      0      0      0       0 ...
  1 |    1     1     1      1      1      1       1 ...
  2 |    3     6    10     15     21     28      36 ...
  3 |   13    36    80    155    273    448     696 ...
  4 |   68   228   610   1410   2933   5628   10128 ...
  5 |  399  1518  4625  12165  28707  62230  125928 ...
  6 | 2530 10530 35322 102548 267162 638624 1422204 ...
  ...
		

Crossrefs

Columns k=0..3 are A000260, A242136, A341917, A341918.
Antidiagonal sums give A341919.
Cf. A146305 (not necessarily strong triangulations), A210664, A341923, A342053.

Programs

  • PARI
    T(n,m)=if(m==0, 2*(4*n+1)!/((3*n+2)!*(n+1)!), (3*(m+2)!*(m-1)!/(3*n+3*m+3)!)*sum(j=0, min(m,n-1), (4*n+3*m-j+1)!*(m+j+2)*(m-3*j)/(j!*(j+1)!*(m-j)!*(m-j+2)!*(n-j-1)!)))

Formula

T(n,0) = A000260(n) = 2*(4*n+1)!/((3*n+2)!*(n+1)!).
T(n,m) = (3*(m+2)!*(m-1)!/(3*n+3*m+3)!) * Sum_{j=0..min(m,n-1)} (4*n+3*m-j+1)!*(m+j+2)*(m-3*j)/(j!*(j+1)!*(m-j)!*(m-j+2)!*(n-j-1)!) for m > 0.

A341923 Array read by antidiagonals: T(n,k) is the number of 3-connected triangulations of a disk up to orientation-preserving isomorphisms with n interior nodes and k nodes on the boundary, n >= 1, k >= 3.

Original entry on oeis.org

1, 1, 1, 1, 2, 5, 1, 2, 10, 24, 1, 3, 16, 60, 133, 1, 3, 28, 122, 386, 846, 1, 4, 39, 242, 925, 2652, 5661, 1, 4, 58, 419, 2039, 7066, 18914, 39556, 1, 5, 78, 711, 4101, 17138, 54560, 139264, 286000, 1, 5, 106, 1128, 7801, 38166, 142802, 426462, 1048947, 2123329
Offset: 1

Views

Author

Andrew Howroyd, Feb 26 2021

Keywords

Comments

The initial terms of this sequence can also be computed using the tool "plantri", in particular the command "./plantri -u -v -o -P [n]" will compute values for a diagonal.

Examples

			Array begins:
=====================================================
n\k |     3      4      5       6       7       8
----+------------------------------------------------
  1 |     1      1      1       1       1       1 ...
  2 |     1      2      2       3       3       4 ...
  3 |     5     10     16      28      39      58 ...
  4 |    24     60    122     242     419     711 ...
  5 |   133    386    925    2039    4101    7801 ...
  6 |   846   2652   7066   17138   38166   79908 ...
  7 |  5661  18914  54560  142802  345099  782210 ...
  8 | 39556 139264 426462 1188412 3067938 7433635 ...
  ...
		

Crossrefs

Columns k=3..6 are A002709, A341924, A341925, A341926.
Antidiagonal sums are A342052.
Cf. A262586 (2-connected), A341856 (rooted), A342053 (unrooted).

Programs

A058786 Number of n-hedra with 2n-5 vertices or 3n-7 edges (the vertices of these are all of degree 3, except one which is of degree 4). Alternatively, the number of polyhedra with n vertices whose faces are all triangular, except one which is tetragonal.

Original entry on oeis.org

1, 2, 8, 38, 219, 1404, 9714, 70454, 527235, 4037671, 31477887, 249026400, 1994599707, 16147744792, 131959532817, 1087376999834, 9027039627035, 75441790558926, 634311771606750, 5362639252793358, 45565021714371644, 388937603694422120, 3333984869758146814
Offset: 5

Views

Author

Gerard P. Michon, Nov 29 2000

Keywords

Examples

			a(5)=1 because the square pyramid is the only pentahedron with 5=2*5-5 vertices (or 8=3*5-7 edges). Alternatively, a(5)=1 because the square pyramid is the only polyhedron with 5 vertices whose faces are all triangles with only one tetragonal exception.
		

Crossrefs

Programs

Extensions

Terms a(19) and beyond from Andrew Howroyd, Feb 27 2021

A342056 Number of unrooted 3-connected triangulations of a disk with n nodes.

Original entry on oeis.org

1, 2, 7, 27, 132, 773, 5017, 34861, 253676, 1903584, 14616442, 114254053, 906266345, 7277665889, 59066524810, 483864411124, 3996427278475, 33250623548406, 278472800696431, 2346089674759665, 19872284655990058, 169155659546689252, 1446375853153588731, 12418636483734071261, 107034910337046043232
Offset: 4

Views

Author

Andrew Howroyd, Feb 26 2021

Keywords

Crossrefs

Antidiagonal sums of A342053.
Cf. A342052.

Programs

  • PARI
    A342053AntidiagonalSums(25) \\ See links in A342053 for program.

A342052 Number of 3-connected triangulations of a disk with n nodes up to orientation-preserving isomorphisms.

Original entry on oeis.org

1, 2, 8, 37, 213, 1386, 9524, 68057, 501858, 3788747, 29170667, 228295618, 1811802818, 14552804492, 118124257451, 967698049455, 7992746427963, 66500865364037, 556944249243331, 4692174542007030, 39744552170122779, 338311257783873501, 2892751486485359650
Offset: 4

Views

Author

Andrew Howroyd, Feb 26 2021

Keywords

Crossrefs

Antidiagonal sums of A341923.

Programs

  • PARI
    A341923AntidiagonalSums(25) \\ See links in A342053 for program.

A342054 Number of unrooted 3-connected triangulations of a pentagon with n interior nodes.

Original entry on oeis.org

1, 2, 12, 73, 503, 3661, 27715, 214664, 1691049, 13494718, 108864742, 886520081, 7279644889, 60225617740, 501640531350, 4204146605148, 35432735188076, 300170956721542, 2554988646383521, 21842628856370472, 187487872615533629, 1615346166853635465, 13965841907774754081
Offset: 1

Views

Author

Andrew Howroyd, Feb 26 2021

Keywords

Crossrefs

Column k=5 of A342053.
Cf. A341925.

A342055 Number of unrooted 3-connected triangulations of a hexagon with n interior nodes.

Original entry on oeis.org

1, 3, 20, 140, 1089, 8796, 72204, 596906, 4958736, 41365110, 346477770, 2914165157, 24612003577, 208711039484, 1776879432103, 15185140895506, 130242884479498, 1120949733518971, 9679158242220797, 83836374509942511, 728279201686023394, 6344019713842496995
Offset: 1

Views

Author

Andrew Howroyd, Feb 26 2021

Keywords

Crossrefs

Column k=6 of A342053.
Cf. A341926.
Showing 1-7 of 7 results.