cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A001683 Number of one-sided triangulations of the disk; or flexagons of order n; or unlabeled plane trivalent trees (n-2 internal vertices, all of degree 3 and hence n leaves).

Original entry on oeis.org

1, 1, 1, 1, 4, 6, 19, 49, 150, 442, 1424, 4522, 14924, 49536, 167367, 570285, 1965058, 6823410, 23884366, 84155478, 298377508, 1063750740, 3811803164, 13722384546, 49611801980, 180072089896, 655977266884, 2397708652276, 8791599732140, 32330394085528
Offset: 2

Views

Author

Keywords

Comments

a(n) is the number of triangulations of an n-gon (equivalently, the number of vertices of the (n - 3)-dimensional associahedron) modulo the cyclic action [Bowman and Regev]. - N. J. A. Sloane, Dec 29 2012
a(n) is also the number of non-isomorphic cluster-tilted algebras of type A_(n-3), for n greater than or equal to 5. Equivalently it is the number of non-isomorphic quivers in the mutation class of any quiver with underlying graph A_(n-3) for n greater than or equal to 5. - Hermund A. Torkildsen (hermunda(AT)math.ntnu.no), Aug 06 2008
Number of oriented polyominoes composed of n-2 triangular cells of the hyperbolic regular tiling with Schläfli symbol {3,oo}. A stereographic projection of this tiling on the Poincaré disk can be obtained via the Christensson link. For oriented polyominoes, chiral pairs are counted as two. - Robert A. Russell, Jan 20 2024

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=3 of A295224.
A row or column of the array in A262586.
Polyominoes: A000207 (unoriented), A369314 (chiral), A208355(n-1) (achiral), A005034 {4,oo}, A007173 {3,3,oo}.

Programs

  • Maple
    C := n->binomial(2*n,n)/(n+1); c := x->if whattype(x) = integer then C(x) else 0; fi; A001683 := n->C(n-2)/n + c(n/2-1)/2+(2/3)*c(n/3-1);
  • Mathematica
    p=3; Table[Binomial[(p-1)n, n]/(((p-2)n+1)((p-2)n+2)) +If[OddQ[n], 0, Binomial[(p-1)n/2, n/2]/((p-2)n+2)]+Plus @@ Map[EulerPhi[ # ]Binomial[((p-1)n+1)/#, (n-1)/# ]/((p-1)n+1)&, Complement[Divisors[GCD[p, n-1]], {1}]], {n, 0, 20}] (* Robert A. Russell, Dec 11 2004 *)
    Rest[Rest[CoefficientList[Series[(6 + (1 - 4 x)^(3/2) + 6 x - 3(1 - 4 x^2)^(1/2) - 4 (1 - 4 x^3)^(1/2))/12, {x, 0, 33}], x]]] (* Vincenzo Librandi, Nov 25 2015 *)
  • PARI
    Cat(n)=if(n==floor(n),return(binomial(2*n,n)/(n+1)));0
    for(n=2,100,print1(Cat(n-2)/n+Cat(n/2-1)/2+(2/3)*Cat(n/3-1),", ")) \\ Derek Orr, Feb 26 2017

Formula

a(n) = C(n-2)/n + C(n/2-1)/2 + (2/3)*C(n/3-1), where C(n) = Catalan(n) (A000108) and terms are omitted if their subscripts are not integers.
G.f.: (6 + (1 - 4*x)^(3/2) + 6*x - 3*(1 - 4*x^2)^(1/2) - 4*(1 - 4*x^3)^(1/2))/12. - David Callan, Aug 01 2004
a(n) ~ 2^(2*n-4) / (sqrt(Pi) * n^(5/2)). - Vaclav Kotesovec, Mar 13 2016
a(n+2) = A000207(n) + A369314(n) = 2*A000207(n) - A208355(n-1) = 2*A369314(n) + A208355(n-1). - Robert A. Russell, Jan 19 2024
G.f.: z^2 * (4*G(z) - G(z)^2 + 3*G(z^2) + 4*z*G(z^3)) / 6, where G(z) = 1 + z*G(z)^2 is the g.f. for A000108. - Robert A. Russell, Apr 06 2024

A002709 Triangulations of the disk G_{n,0}.

Original entry on oeis.org

1, 1, 1, 5, 24, 133, 846, 5661, 39556, 286000, 2123329, 16112057, 124512556, 977227830, 7772368380, 62535450861, 508271324688, 4168218286276, 34455941596060, 286864341314320, 2403705165816240, 20258850167232165, 171652324167433710, 1461462393790971585, 12498416291503945764
Offset: 0

Views

Author

Keywords

Comments

Apparently, also the number of regular flexagons of order 3(n+1) (see Oakley-Wisner link pp. 149-151). - Michel Marcus, Jun 23 2013

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=0 of A262586.

Programs

  • PARI
    a(n) = {if (n % 3 == 0, k = n/3; return (binomial(12*k-1,3*k-1)/((6*k-1)*(12*k-1)));); if (n % 3 == 1, k = (n-1)/3; return (binomial(12*k+3, 3*k)/(3*(4*k+1)*(6*k+1))+2*binomial(4*k,k)/(3*(3*k+1)));); if (n % 3 == 2, k = (n-2)/3; return (binomial(12*k+7,3*k+1)/(3*(2*k+1)*(12*k+7))+4*binomial(4*k+1,k)/(3*(3*k+2))););} \\ (number of regular flexagons of order 3*n) Michel Marcus, Jun 15 2013

Extensions

Extended by Max Alekseyev, Mar 30 2009
a(22) onwards from Andrew Howroyd, Nov 23 2024

A169808 Array T(n,k) read by antidiagonals: T(n,k) is the number of [n,k]-triangulations in the plane, n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 4, 5, 4, 4, 11, 14, 18, 16, 12, 28, 53, 69, 88, 78, 27, 91, 178, 295, 396, 489, 457, 82, 291, 685, 1196, 1867, 2503, 3071, 2938, 228, 1004, 2548, 5051, 8385, 12560, 16905, 20667, 20118, 733, 3471, 9876, 21018, 38078, 60736, 89038, 119571, 146381, 144113
Offset: 0

Views

Author

N. J. A. Sloane, May 25 2010

Keywords

Comments

"A closed bounded region in the plane divided into triangular regions with k+3 vertices on the boundary and n internal vertices is said to be a triangular map of type [n,k]." It is a [n,k]-triangulation if there are no multiple edges.
T(n,k) is the number of floor plan arrangements represented by 3-connected trivalent maps with n internal rooms and k+3 rooms adjacent to the outside.
"... may be evaluated from the results given by Brown."
The initial terms of this sequence can also be computed using the tool "plantri", in particular the command "./plantri -u -v -P -c2m2 [n]" will compute values for a diagonal. The '-c2' and '-m2' options indicate graphs must be biconnected and with minimum vertex degree 2. - Andrew Howroyd, Feb 22 2021

Examples

			Array begins:
============================================================
n\k |    0     1      2      3       4        5        6
----+-------------------------------------------------------
  0 |    1     1      1      3       4       12       27 ...
  1 |    1     2      4     11      28       91      291 ...
  2 |    1     5     14     53     178      685     2548 ...
  3 |    4    18     69    295    1196     5051    21018 ...
  4 |   16    88    396   1867    8385    38078   169918 ...
  5 |   78   489   2503  12560   60736   290595  1367374 ...
  6 |  457  3071  16905  89038  451613  2251035 11025626 ...
  7 | 2938 20667 119571 652198 3429943 17658448 89328186 ...
  ...
		

References

  • C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.

Crossrefs

Columns k=0..3 are A002713, A005500, A005501, A005502.
Rows n=0..2 are A000207, A005503, A005504.
Antidiagonal sums give A005027.
Cf. A146305 (rooted), A169809 (achiral), A262586 (oriented).

Programs

Formula

T(n,k) = (A262586(n,k) + A169809(n,k)) / 2. - Andrew Howroyd, Feb 22 2021

Extensions

Edited by Andrew Howroyd, Feb 22 2021
a(29) corrected and terms a(36) and beyond from Andrew Howroyd, Feb 22 2021

A169809 Array T(n,k) read by antidiagonals: T(n,k) is the number of [n,k]-triangulations in the plane that have reflection symmetry, n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 3, 4, 3, 2, 6, 7, 10, 8, 5, 8, 18, 19, 29, 23, 5, 18, 26, 52, 57, 86, 68, 14, 23, 68, 82, 166, 176, 266, 215, 14, 56, 91, 220, 270, 524, 557, 844, 680, 42, 70, 248, 321, 769, 890, 1722, 1806, 2742, 2226, 42, 180, 318, 872, 1151, 2568, 2986, 5664, 5954, 9032, 7327
Offset: 0

Views

Author

N. J. A. Sloane, May 25 2010

Keywords

Comments

"A closed bounded region in the plane divided into triangular regions with k+3 vertices on the boundary and n internal vertices is said to be a triangular map of type [n,k]." It is a [n,k]-triangulation if there are no multiple edges.
"... may be evaluated from the results given by Brown."

Examples

			Array begins:
====================================================
n\k |   0   1    2    3     4     5     6      7
----+-----------------------------------------------
  0 |   1   1    1    2     2     5     5     14 ...
  1 |   1   2    3    6     8    18    23     56 ...
  2 |   1   4    7   18    26    68    91    248 ...
  3 |   3  10   19   52    82   220   321    872 ...
  4 |   8  29   57  166   270   769  1151   3296 ...
  5 |  23  86  176  524   890  2568  4020  11558 ...
  6 |  68 266  557 1722  2986  8902 14197  42026 ...
  7 | 215 844 1806 5664 10076 30362 49762 148208 ...
  ...
		

References

  • C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.

Crossrefs

Columns k=0..3 are A002712, A005505, A005506, A005507.
Rows n=0..2 are A208355, A005508, A005509.
Antidiagonal sums give A005028.
Cf. A146305 (rooted), A169808 (unrooted), A262586 (oriented).

Programs

Extensions

Edited and terms a(36) and beyond from Andrew Howroyd, Feb 22 2021

A146305 Array T(n,m) = 2*(2m+3)!*(4n+2m+1)!/(m!*(m+2)!*n!*(3n+2m+3)!) read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 3, 5, 5, 13, 20, 21, 14, 68, 100, 105, 84, 42, 399, 570, 595, 504, 330, 132, 2530, 3542, 3675, 3192, 2310, 1287, 429, 16965, 23400, 24150, 21252, 16170, 10296, 5005, 1430, 118668, 161820, 166257, 147420, 115500, 78936, 45045, 19448, 4862, 857956
Offset: 0

Views

Author

R. J. Mathar, Oct 29 2008

Keywords

Comments

T(n,m) is the number of rooted nonseparable (2-connected) triangulations of the disk with n internal nodes and 3 + m nodes on the external face. The triangulation has 2*n + m + 1 triangles and 3*(n+1) + 2*m edges. - Andrew Howroyd, Feb 21 2021

Examples

			The array starts at row n=0 and column m=0 as
.....1......2.......5......14.......42.......132
.....1......5......21......84......330......1287
.....3.....20.....105.....504.....2310.....10296
....13....100.....595....3192....16170.....78936
....68....570....3675...21252...115500....602316
...399...3542...24150..147420...844074...4628052
..2530..23400..166257.1057224..6301680..35939904
.16965.161820.1186680.7791168.47948670.282285432
		

Crossrefs

Columns m=0..3 are A000260, A197271(n+1), A341853, A341854.
Rows n=0..2 are A000108(n+1), A002054(n+1) and A000917.
Antidiagonal sums are A000260(n+1).
Cf. A169808 (unrooted), A169809 (achiral), A262586 (oriented).

Programs

  • Maple
    A146305 := proc(n,m)
        2*(2*m+3)!*(4*n+2*m+1)!/m!/(m+2)!/n!/(3*n+2*m+3)! ;
    end proc:
    for d from 0 to 13 do
        for m from 0 to d do
            printf("%d,", A146305(d-m,m)) ;
        end do:
    end do:
  • Mathematica
    T[n_, m_] := 2*(2*m+3)!*(4*n+2*m+1)!/m!/(m+2)!/n!/(3*n+2*m+3)!; Table[T[n-m, m], {n, 0, 13}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jan 06 2014, after Maple *)
  • PARI
    T(n,m)={2*(2*m+3)!*(4*n+2*m+1)!/(m!*(m+2)!*n!*(3*n+2*m+3)!)} \\ Andrew Howroyd, Feb 21 2021

A341923 Array read by antidiagonals: T(n,k) is the number of 3-connected triangulations of a disk up to orientation-preserving isomorphisms with n interior nodes and k nodes on the boundary, n >= 1, k >= 3.

Original entry on oeis.org

1, 1, 1, 1, 2, 5, 1, 2, 10, 24, 1, 3, 16, 60, 133, 1, 3, 28, 122, 386, 846, 1, 4, 39, 242, 925, 2652, 5661, 1, 4, 58, 419, 2039, 7066, 18914, 39556, 1, 5, 78, 711, 4101, 17138, 54560, 139264, 286000, 1, 5, 106, 1128, 7801, 38166, 142802, 426462, 1048947, 2123329
Offset: 1

Views

Author

Andrew Howroyd, Feb 26 2021

Keywords

Comments

The initial terms of this sequence can also be computed using the tool "plantri", in particular the command "./plantri -u -v -o -P [n]" will compute values for a diagonal.

Examples

			Array begins:
=====================================================
n\k |     3      4      5       6       7       8
----+------------------------------------------------
  1 |     1      1      1       1       1       1 ...
  2 |     1      2      2       3       3       4 ...
  3 |     5     10     16      28      39      58 ...
  4 |    24     60    122     242     419     711 ...
  5 |   133    386    925    2039    4101    7801 ...
  6 |   846   2652   7066   17138   38166   79908 ...
  7 |  5661  18914  54560  142802  345099  782210 ...
  8 | 39556 139264 426462 1188412 3067938 7433635 ...
  ...
		

Crossrefs

Columns k=3..6 are A002709, A341924, A341925, A341926.
Antidiagonal sums are A342052.
Cf. A262586 (2-connected), A341856 (rooted), A342053 (unrooted).

Programs

A210696 Triangulations of the disk, G_{1,n}.

Original entry on oeis.org

1, 2, 5, 16, 48, 164, 559, 1952, 6872, 24520, 88006, 318444, 1158944, 4241688, 15598973, 57620596, 213680472, 795270644, 2969483214, 11121038100, 41763779054, 157235683780, 593355907790, 2243975358216, 8503404201874, 32283434698908, 122779218918272, 467713035691608
Offset: 0

Views

Author

R. J. Mathar, Mar 30 2012

Keywords

Comments

This corrects a typographical error in A005497(6).

Crossrefs

Row n=1 of A262586.

Programs

  • Maple
    BrownE := proc(r,n,m)
        local j,s,p ;
        if r < 1 then
            return 0 ;
        elif r = 1 then
            return A146305(n,m) ;
        elif r = 2 then
            j := n mod 2 ; s := floor(n/2) ;
            if type(m,'even') then
                return 0 ;
            end if;
            p := (m+1)/2 ;
            if p > 0 and s >= 0 then
                return 2*(2*p)!*(4*s+2*p+2*j-1)!/p!/(p-1)!/s!/(3*s+2*p+2*j)! ;
            else
                return 0 ;
            end if;
        elif r =3 and (n mod 3) =0 and (m mod 3) = 0 then
            s := n/3 ; p := m/3 ;
            if p >= 0 and s >= 0 then
                return (2*p+1)!*(4*s+2*p)!/p!/p!/s!/(3*s+2*p+1)! ;
            else
                return 0 ;
            end if;
        elif r >= 3 then
            if ((n-1) mod r) =0 and ((m+3) mod r) =0 then
                s := (n-1)/r ; p := (m+3)/r-1 ;
                if p>=0 and s>=0 then
                return (2*p+2)!*(4*s+2*p+1)!/p!/(p+1)!/s!/(3*s+2*p+2)! ;
                else
                    return 0 ;
                end if;
            else
                return 0 ;
            end if;
        else
            return 0 ;
        end if;
    end proc:
    BrownG := proc(n,m)
        add( numtheory[phi](s)* BrownE(s,n,m), s = numtheory[divisors](m+3) ) ;
        %/(m+3) ;
    end proc:
    A210696 := proc(n)
        BrownG(1,n) ;
    end proc:
    seq(A210696(n),n=0..25) ;
  • Mathematica
    (* See the link section. *)

Extensions

a(26) onwards from Andrew Howroyd, Nov 23 2024

A378335 Number of n-node connected sensed planar maps with an external face in which all internal faces are triangles.

Original entry on oeis.org

1, 2, 5, 23, 114, 675, 4357, 29692, 209933, 1531349, 11439545, 87202034, 676101375, 5319069978, 42378741675, 341403125204, 2777329727768, 22790623236250, 188475690185517, 1569588986566488, 13153980294670851, 110870960421707325, 939397206702263021
Offset: 3

Views

Author

Andrew Howroyd, Nov 23 2024

Keywords

Comments

See A377785 for illustration of initial terms. This sequence does not consider a planar map to be equivalent to its mirror image.

Crossrefs

Programs

A378336 Triangle read by rows: T(n,k) is the number of n node connected sensed planar maps with an external face and k triangular internal faces, n >= 3, 1 <= k <= 2*n - 5.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 2, 1, 0, 0, 2, 5, 5, 6, 5, 0, 0, 2, 8, 13, 20, 21, 26, 24, 0, 0, 0, 10, 28, 55, 79, 104, 119, 147, 133, 0, 0, 0, 7, 45, 126, 230, 360, 491, 625, 735, 892, 846, 0, 0, 0, 0, 44, 227, 561, 1066, 1682, 2430, 3241, 4074, 4830, 5876, 5661
Offset: 3

Views

Author

Andrew Howroyd, Nov 23 2024

Keywords

Comments

See A378103 for illustration of initial terms. This sequence does not consider planar maps to be equivalent to their reflections.
The planar maps considered are without loops or isthmuses.
In other words, a(n) is the number of embeddings in the plane of connected bridgeless planar simple graphs with n vertices and k triangular internal faces up to orientation preserving isomorphisms.
The number of edges is n + k - 1.

Examples

			Triangle begins:
n\k | 1  2  3   4   5    6    7    8    9   10   11   12   13
----+----------------------------------------------------------
  3 | 1;
  4 | 0, 1, 1;
  5 | 0, 1, 1,  2,  1;
  6 | 0, 0, 2,  5,  5,   6,   5;
  7 | 0, 0, 2,  8, 13,  20,  21,  26,  24;
  8 | 0, 0, 0, 10, 28,  55,  79, 104, 119, 147, 133;
  9 | 0, 0, 0,  7, 45, 126, 230, 360, 491, 625, 735, 892, 846;
  ...
		

Crossrefs

Row sums are A378335.
Column sums are A378337.
Antidiagonal sums are A378338.
The final 3 terms of each row are in A002709, A002710, A002711.
Cf. A262586 (2-connected), A341923 (3-connected), A378103, (unsensed), A378340 (achiral).

Programs

  • PARI
    my(A=A378336rows(10)); for(i=1, #A, print(A[i])) \\ See PARI link in A378340 for program code.

Formula

T(n,k) = 0 for n > 2*k + 1.
T(n,2*n-5) = A002709(n-3).
T(n,2*n-6) = A002710(n-4) for n >= 4.
T(n,2*n-7) = A002711(n-5) for n >= 5.

A002710 Triangulations of the disk G_{n,1}.

Original entry on oeis.org

1, 2, 6, 26, 147, 892, 5876, 40490, 290020, 2136488, 16113254, 123878966, 968017330, 7670113856, 61510346760, 498496979754, 4077605379276, 33629943832280, 279413323740280, 2336935584712872, 19663001667901339, 166348460274745684, 1414318445894183076, 12079654921382780966
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=1 of A262586.

Extensions

Extended by Max Alekseyev, Mar 30 2009
a(21) onwards from Andrew Howroyd, Nov 23 2024
Showing 1-10 of 14 results. Next