cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A001683 Number of one-sided triangulations of the disk; or flexagons of order n; or unlabeled plane trivalent trees (n-2 internal vertices, all of degree 3 and hence n leaves).

Original entry on oeis.org

1, 1, 1, 1, 4, 6, 19, 49, 150, 442, 1424, 4522, 14924, 49536, 167367, 570285, 1965058, 6823410, 23884366, 84155478, 298377508, 1063750740, 3811803164, 13722384546, 49611801980, 180072089896, 655977266884, 2397708652276, 8791599732140, 32330394085528
Offset: 2

Views

Author

Keywords

Comments

a(n) is the number of triangulations of an n-gon (equivalently, the number of vertices of the (n - 3)-dimensional associahedron) modulo the cyclic action [Bowman and Regev]. - N. J. A. Sloane, Dec 29 2012
a(n) is also the number of non-isomorphic cluster-tilted algebras of type A_(n-3), for n greater than or equal to 5. Equivalently it is the number of non-isomorphic quivers in the mutation class of any quiver with underlying graph A_(n-3) for n greater than or equal to 5. - Hermund A. Torkildsen (hermunda(AT)math.ntnu.no), Aug 06 2008
Number of oriented polyominoes composed of n-2 triangular cells of the hyperbolic regular tiling with Schläfli symbol {3,oo}. A stereographic projection of this tiling on the Poincaré disk can be obtained via the Christensson link. For oriented polyominoes, chiral pairs are counted as two. - Robert A. Russell, Jan 20 2024

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=3 of A295224.
A row or column of the array in A262586.
Polyominoes: A000207 (unoriented), A369314 (chiral), A208355(n-1) (achiral), A005034 {4,oo}, A007173 {3,3,oo}.

Programs

  • Maple
    C := n->binomial(2*n,n)/(n+1); c := x->if whattype(x) = integer then C(x) else 0; fi; A001683 := n->C(n-2)/n + c(n/2-1)/2+(2/3)*c(n/3-1);
  • Mathematica
    p=3; Table[Binomial[(p-1)n, n]/(((p-2)n+1)((p-2)n+2)) +If[OddQ[n], 0, Binomial[(p-1)n/2, n/2]/((p-2)n+2)]+Plus @@ Map[EulerPhi[ # ]Binomial[((p-1)n+1)/#, (n-1)/# ]/((p-1)n+1)&, Complement[Divisors[GCD[p, n-1]], {1}]], {n, 0, 20}] (* Robert A. Russell, Dec 11 2004 *)
    Rest[Rest[CoefficientList[Series[(6 + (1 - 4 x)^(3/2) + 6 x - 3(1 - 4 x^2)^(1/2) - 4 (1 - 4 x^3)^(1/2))/12, {x, 0, 33}], x]]] (* Vincenzo Librandi, Nov 25 2015 *)
  • PARI
    Cat(n)=if(n==floor(n),return(binomial(2*n,n)/(n+1)));0
    for(n=2,100,print1(Cat(n-2)/n+Cat(n/2-1)/2+(2/3)*Cat(n/3-1),", ")) \\ Derek Orr, Feb 26 2017

Formula

a(n) = C(n-2)/n + C(n/2-1)/2 + (2/3)*C(n/3-1), where C(n) = Catalan(n) (A000108) and terms are omitted if their subscripts are not integers.
G.f.: (6 + (1 - 4*x)^(3/2) + 6*x - 3*(1 - 4*x^2)^(1/2) - 4*(1 - 4*x^3)^(1/2))/12. - David Callan, Aug 01 2004
a(n) ~ 2^(2*n-4) / (sqrt(Pi) * n^(5/2)). - Vaclav Kotesovec, Mar 13 2016
a(n+2) = A000207(n) + A369314(n) = 2*A000207(n) - A208355(n-1) = 2*A369314(n) + A208355(n-1). - Robert A. Russell, Jan 19 2024
G.f.: z^2 * (4*G(z) - G(z)^2 + 3*G(z^2) + 4*z*G(z^3)) / 6, where G(z) = 1 + z*G(z)^2 is the g.f. for A000108. - Robert A. Russell, Apr 06 2024

A169808 Array T(n,k) read by antidiagonals: T(n,k) is the number of [n,k]-triangulations in the plane, n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 4, 5, 4, 4, 11, 14, 18, 16, 12, 28, 53, 69, 88, 78, 27, 91, 178, 295, 396, 489, 457, 82, 291, 685, 1196, 1867, 2503, 3071, 2938, 228, 1004, 2548, 5051, 8385, 12560, 16905, 20667, 20118, 733, 3471, 9876, 21018, 38078, 60736, 89038, 119571, 146381, 144113
Offset: 0

Views

Author

N. J. A. Sloane, May 25 2010

Keywords

Comments

"A closed bounded region in the plane divided into triangular regions with k+3 vertices on the boundary and n internal vertices is said to be a triangular map of type [n,k]." It is a [n,k]-triangulation if there are no multiple edges.
T(n,k) is the number of floor plan arrangements represented by 3-connected trivalent maps with n internal rooms and k+3 rooms adjacent to the outside.
"... may be evaluated from the results given by Brown."
The initial terms of this sequence can also be computed using the tool "plantri", in particular the command "./plantri -u -v -P -c2m2 [n]" will compute values for a diagonal. The '-c2' and '-m2' options indicate graphs must be biconnected and with minimum vertex degree 2. - Andrew Howroyd, Feb 22 2021

Examples

			Array begins:
============================================================
n\k |    0     1      2      3       4        5        6
----+-------------------------------------------------------
  0 |    1     1      1      3       4       12       27 ...
  1 |    1     2      4     11      28       91      291 ...
  2 |    1     5     14     53     178      685     2548 ...
  3 |    4    18     69    295    1196     5051    21018 ...
  4 |   16    88    396   1867    8385    38078   169918 ...
  5 |   78   489   2503  12560   60736   290595  1367374 ...
  6 |  457  3071  16905  89038  451613  2251035 11025626 ...
  7 | 2938 20667 119571 652198 3429943 17658448 89328186 ...
  ...
		

References

  • C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.

Crossrefs

Columns k=0..3 are A002713, A005500, A005501, A005502.
Rows n=0..2 are A000207, A005503, A005504.
Antidiagonal sums give A005027.
Cf. A146305 (rooted), A169809 (achiral), A262586 (oriented).

Programs

Formula

T(n,k) = (A262586(n,k) + A169809(n,k)) / 2. - Andrew Howroyd, Feb 22 2021

Extensions

Edited by Andrew Howroyd, Feb 22 2021
a(29) corrected and terms a(36) and beyond from Andrew Howroyd, Feb 22 2021

A262586 Square array T(n,m) (n>=0, m>=0) read by antidiagonals downwards giving number of rooted triangulations of type [n,m] up to orientation-preserving isomorphisms.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 4, 5, 6, 5, 6, 16, 21, 26, 24, 19, 48, 88, 119, 147, 133, 49, 164, 330, 538, 735, 892, 846, 150, 559, 1302, 2310, 3568, 4830, 5876, 5661, 442, 1952, 5005, 9882, 16500, 24596, 33253, 40490, 39556, 1424, 6872, 19504, 41715, 75387, 120582, 176354, 237336, 290020, 286000, 4522
Offset: 0

Views

Author

N. J. A. Sloane, Oct 20 2015

Keywords

Examples

			Array begins:
 ==============================================================
 n\k |    0     1      2       3       4        5         6 ...
 ----+---------------------------------------------------------
   0 |    1     1      1       4       6       19        49 ...
   1 |    1     2      5      16      48      164       559 ...
   2 |    1     6     21      88     330     1302      5005 ...
   3 |    5    26    119     538    2310     9882     41715 ...
   4 |   24   147    735    3568   16500    75387    338685 ...
   5 |  133   892   4830   24596  120582   578622   2730728 ...
   6 |  846  5876  33253  176354  900240  4493168  22037055 ...
   7 | 5661 40490 237336 1298732 6849810 35286534 178606610 ...
   ...
The first few antidiagonals are:
  1,
  1,1,
  1,2,1,
  4,5,6,5,
  6,16,21,26,24,
  19,48,88,119,147,133,
  49,164,330,538,735,892,846,
  ...
		

Crossrefs

Columns 0..2 are A002709, A002710, A002711.
Rows 0..3 are A001683, A210696, A005498, A005499.
Antidiagonal sums are A341855.
Cf. A169808 (unoriented), A169809 (achiral).

Programs

  • Maple
    A262586 := proc(n,m)
        BrownG(n,m) ; # procedure in A210696
    end proc:
    for d from 0 to 12 do
        for n from 0 to d do
            printf("%d,",A262586(n,d-n)) ;
        end do:
    end do: # R. J. Mathar, Oct 21 2015
  • Mathematica
    (* See LINKS section. *)
  • PARI
    \\ See Links in A169808 for PARI program file.
    { for(n=0, 7, for(k=0, 7, print1(OrientedTriangs(n,k), ", ")); print) } \\ Andrew Howroyd, Nov 23 2024

Formula

Brown (Eq. 6.3) gives a formula.

A341923 Array read by antidiagonals: T(n,k) is the number of 3-connected triangulations of a disk up to orientation-preserving isomorphisms with n interior nodes and k nodes on the boundary, n >= 1, k >= 3.

Original entry on oeis.org

1, 1, 1, 1, 2, 5, 1, 2, 10, 24, 1, 3, 16, 60, 133, 1, 3, 28, 122, 386, 846, 1, 4, 39, 242, 925, 2652, 5661, 1, 4, 58, 419, 2039, 7066, 18914, 39556, 1, 5, 78, 711, 4101, 17138, 54560, 139264, 286000, 1, 5, 106, 1128, 7801, 38166, 142802, 426462, 1048947, 2123329
Offset: 1

Views

Author

Andrew Howroyd, Feb 26 2021

Keywords

Comments

The initial terms of this sequence can also be computed using the tool "plantri", in particular the command "./plantri -u -v -o -P [n]" will compute values for a diagonal.

Examples

			Array begins:
=====================================================
n\k |     3      4      5       6       7       8
----+------------------------------------------------
  1 |     1      1      1       1       1       1 ...
  2 |     1      2      2       3       3       4 ...
  3 |     5     10     16      28      39      58 ...
  4 |    24     60    122     242     419     711 ...
  5 |   133    386    925    2039    4101    7801 ...
  6 |   846   2652   7066   17138   38166   79908 ...
  7 |  5661  18914  54560  142802  345099  782210 ...
  8 | 39556 139264 426462 1188412 3067938 7433635 ...
  ...
		

Crossrefs

Columns k=3..6 are A002709, A341924, A341925, A341926.
Antidiagonal sums are A342052.
Cf. A262586 (2-connected), A341856 (rooted), A342053 (unrooted).

Programs

A210696 Triangulations of the disk, G_{1,n}.

Original entry on oeis.org

1, 2, 5, 16, 48, 164, 559, 1952, 6872, 24520, 88006, 318444, 1158944, 4241688, 15598973, 57620596, 213680472, 795270644, 2969483214, 11121038100, 41763779054, 157235683780, 593355907790, 2243975358216, 8503404201874, 32283434698908, 122779218918272, 467713035691608
Offset: 0

Views

Author

R. J. Mathar, Mar 30 2012

Keywords

Comments

This corrects a typographical error in A005497(6).

Crossrefs

Row n=1 of A262586.

Programs

  • Maple
    BrownE := proc(r,n,m)
        local j,s,p ;
        if r < 1 then
            return 0 ;
        elif r = 1 then
            return A146305(n,m) ;
        elif r = 2 then
            j := n mod 2 ; s := floor(n/2) ;
            if type(m,'even') then
                return 0 ;
            end if;
            p := (m+1)/2 ;
            if p > 0 and s >= 0 then
                return 2*(2*p)!*(4*s+2*p+2*j-1)!/p!/(p-1)!/s!/(3*s+2*p+2*j)! ;
            else
                return 0 ;
            end if;
        elif r =3 and (n mod 3) =0 and (m mod 3) = 0 then
            s := n/3 ; p := m/3 ;
            if p >= 0 and s >= 0 then
                return (2*p+1)!*(4*s+2*p)!/p!/p!/s!/(3*s+2*p+1)! ;
            else
                return 0 ;
            end if;
        elif r >= 3 then
            if ((n-1) mod r) =0 and ((m+3) mod r) =0 then
                s := (n-1)/r ; p := (m+3)/r-1 ;
                if p>=0 and s>=0 then
                return (2*p+2)!*(4*s+2*p+1)!/p!/(p+1)!/s!/(3*s+2*p+2)! ;
                else
                    return 0 ;
                end if;
            else
                return 0 ;
            end if;
        else
            return 0 ;
        end if;
    end proc:
    BrownG := proc(n,m)
        add( numtheory[phi](s)* BrownE(s,n,m), s = numtheory[divisors](m+3) ) ;
        %/(m+3) ;
    end proc:
    A210696 := proc(n)
        BrownG(1,n) ;
    end proc:
    seq(A210696(n),n=0..25) ;
  • Mathematica
    (* See the link section. *)

Extensions

a(26) onwards from Andrew Howroyd, Nov 23 2024

A002713 Number of unrooted triangulations of the disk with n interior nodes and 3 nodes on the boundary.

Original entry on oeis.org

1, 1, 1, 4, 16, 78, 457, 2938, 20118, 144113, 1065328, 8068332, 62297808, 488755938, 3886672165, 31269417102, 254141551498, 2084129777764, 17228043363781, 143432427097935, 1201853492038096, 10129428318995227, 85826173629557200
Offset: 0

Views

Author

Keywords

Comments

These are also called [n,0]-triangulations.

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=0 of A169808.

Formula

a(n) = (A002709(n) + A002712(n)) / 2.

Extensions

Terms a(9) onward from Max Alekseyev, May 11 2010
Name clarified by Andrew Howroyd, Feb 24 2021

A197271 a(n) = (10 / ((3*n+1)*(3*n+2))) * binomial(4*n, n).

Original entry on oeis.org

5, 2, 5, 20, 100, 570, 3542, 23400, 161820, 1159400, 8544965, 64448228, 495508780, 3872033900, 30680401500, 246041115600, 1993987498284, 16310419381080, 134519771966180, 1117653277802000, 9347742311507600, 78652006531467930, 665393840873409150, 5657273782416664200, 48318619683648190500
Offset: 0

Views

Author

Peter Bala, Oct 12 2011

Keywords

Comments

A combinatorial interpretation for this sequence in terms of a family of plane trees is given in [Schaeffer, Corollary 2 with k = 4].
For n>=1, the number of rooted strict triangulations of a square with n-1 internal vertices, where a triangulation is "strict" if no two distinct edges have the same pair of ends. See equation (1) in [Tutte 1980] (who references [Brown 1964]) for the number of rooted strict near-triangulations of type (n,m), with m=1. - Noam Zeilberger, Jan 04 2023

Crossrefs

Column m=1 of A146305.

Programs

  • Mathematica
    Table[10/((3n+1)(3n+2)) Binomial[4n,n],{n,0,30}] (* Harvey P. Dale, Jan 27 2015 *)

Formula

a(n) = 10/((3*n+1)*(3*n+2))*binomial(4*n,n).
a(n) = A000260(n) * 5*(n+1)/(4*n+1). - Noam Zeilberger, May 20 2019
a(n) ~ c*(256/27)^n / n^(5/2), where c = (10/9)*sqrt(2/(3*Pi)) = 0.511843.... - Peter Luschny, Jan 05 2023
D-finite with recurrence 3*n*(3*n+2)*(3*n+1)*a(n) -8*(4*n-3)*(2*n-1)*(4*n-1)*a(n-1)=0. - R. J. Mathar, Jul 31 2024

A378336 Triangle read by rows: T(n,k) is the number of n node connected sensed planar maps with an external face and k triangular internal faces, n >= 3, 1 <= k <= 2*n - 5.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 2, 1, 0, 0, 2, 5, 5, 6, 5, 0, 0, 2, 8, 13, 20, 21, 26, 24, 0, 0, 0, 10, 28, 55, 79, 104, 119, 147, 133, 0, 0, 0, 7, 45, 126, 230, 360, 491, 625, 735, 892, 846, 0, 0, 0, 0, 44, 227, 561, 1066, 1682, 2430, 3241, 4074, 4830, 5876, 5661
Offset: 3

Views

Author

Andrew Howroyd, Nov 23 2024

Keywords

Comments

See A378103 for illustration of initial terms. This sequence does not consider planar maps to be equivalent to their reflections.
The planar maps considered are without loops or isthmuses.
In other words, a(n) is the number of embeddings in the plane of connected bridgeless planar simple graphs with n vertices and k triangular internal faces up to orientation preserving isomorphisms.
The number of edges is n + k - 1.

Examples

			Triangle begins:
n\k | 1  2  3   4   5    6    7    8    9   10   11   12   13
----+----------------------------------------------------------
  3 | 1;
  4 | 0, 1, 1;
  5 | 0, 1, 1,  2,  1;
  6 | 0, 0, 2,  5,  5,   6,   5;
  7 | 0, 0, 2,  8, 13,  20,  21,  26,  24;
  8 | 0, 0, 0, 10, 28,  55,  79, 104, 119, 147, 133;
  9 | 0, 0, 0,  7, 45, 126, 230, 360, 491, 625, 735, 892, 846;
  ...
		

Crossrefs

Row sums are A378335.
Column sums are A378337.
Antidiagonal sums are A378338.
The final 3 terms of each row are in A002709, A002710, A002711.
Cf. A262586 (2-connected), A341923 (3-connected), A378103, (unsensed), A378340 (achiral).

Programs

  • PARI
    my(A=A378336rows(10)); for(i=1, #A, print(A[i])) \\ See PARI link in A378340 for program code.

Formula

T(n,k) = 0 for n > 2*k + 1.
T(n,2*n-5) = A002709(n-3).
T(n,2*n-6) = A002710(n-4) for n >= 4.
T(n,2*n-7) = A002711(n-5) for n >= 5.

A002710 Triangulations of the disk G_{n,1}.

Original entry on oeis.org

1, 2, 6, 26, 147, 892, 5876, 40490, 290020, 2136488, 16113254, 123878966, 968017330, 7670113856, 61510346760, 498496979754, 4077605379276, 33629943832280, 279413323740280, 2336935584712872, 19663001667901339, 166348460274745684, 1414318445894183076, 12079654921382780966
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=1 of A262586.

Extensions

Extended by Max Alekseyev, Mar 30 2009
a(21) onwards from Andrew Howroyd, Nov 23 2024

A002711 Triangulations of the disk G_{n,2}.

Original entry on oeis.org

1, 5, 21, 119, 735, 4830, 33253, 237336, 1743588, 13114465, 100591491, 784428522, 6204258970, 49675571820, 402013608525, 3284214703056, 27055525967324, 224557688302164, 1876374953765620, 15774315150669075, 133345566025874055, 1132905339504465590, 9669675838370401035
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=2 of A262586.
Cf. A210696.

Programs

Extensions

Extended by Max Alekseyev, Mar 30 2009
a(21) onwards from Andrew Howroyd, Nov 23 2024
Showing 1-10 of 15 results. Next