A001683
Number of one-sided triangulations of the disk; or flexagons of order n; or unlabeled plane trivalent trees (n-2 internal vertices, all of degree 3 and hence n leaves).
Original entry on oeis.org
1, 1, 1, 1, 4, 6, 19, 49, 150, 442, 1424, 4522, 14924, 49536, 167367, 570285, 1965058, 6823410, 23884366, 84155478, 298377508, 1063750740, 3811803164, 13722384546, 49611801980, 180072089896, 655977266884, 2397708652276, 8791599732140, 32330394085528
Offset: 2
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n=2..200
- Marc J. Beauchamp, On Extremal Punctured Spheres, Dissertation, University of Pittsburgh, 2017.
- F. R. Bernhart & N. J. A. Sloane, Correspondence, 1977
- Douglas Bowman and Alon Regev, Counting symmetry classes of dissections of a convex regular polygon, arXiv preprint arXiv:1209.6270 [math.CO], 2012. See Th. 29(2).
- William G. Brown, Enumeration of Triangulations of the Disk, Proc. Lond. Math. Soc. s3-14 (1964) 746-768.
- W. G. Brown, Enumeration of Triangulations of the Disk, Proc. Lond. Math. Soc. s3-14 (1964) 746-768. [Annotated scanned copy]
- P. J. Cameron, Some treelike objects, Quart. J. Math. Oxford, 38 (1987), 155-183. See p. 163, line 4, but note that the formula given there has many typos (see the correct version given here).
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Malin Christensson, Make hyperbolic tilings of images, web page, 2019.
- O. Devillers, Vertex removal in two-dimensional Delauney triangulation: Speed-up by low degrees optimization, Comp. Geom. 44 (2011) 169.
- Petr Gregor, Sven Jäger, Torsten Mütze, Joe Sawada, Kaja Wille, Gray codes and symmetric chains, arXiv:1802.06021 [math.CO], 2018.
- F. Harary, E. M. Palmer, R. C. Read, On the cell-growth problem for arbitrary polygons, computer printout, circa 1974
- F. Harary, E. M. Palmer and R. C. Read, On the cell-growth problem for arbitrary polygons, Discr. Math. 11 (1975), 371-389.
- E. Krasko, A. Omelchenko, Brown's Theorem and its Application for Enumeration of Dissections and Planar Trees, The Electronic Journal of Combinatorics, 22 (2015), #P1.17.
- C. O. Oakley and R. J. Wisner, Flexagons, The American Mathematical Monthly, Vol. 64, No. 3 (Mar., 1957), pp. 143-154
- R. C. Read, On general dissections of a polygon, Preprint (1974)
- Hermund A. Torkildsen, Counting cluster-tilted algebras of type A_n, International Electronic Journal of Algebra, 4, 2008, 149-158. [From Hermund A. Torkildsen (hermunda(AT)math.ntnu.no), Aug 06 2008]
- Hermund A. Torkildsen, Colored quivers of type A and the cell-growth problem, J. Algebra and Applications, 12 (2013), #1250133. - From _N. J. A. Sloane_, Jan 22 2013
A row or column of the array in
A262586.
-
C := n->binomial(2*n,n)/(n+1); c := x->if whattype(x) = integer then C(x) else 0; fi; A001683 := n->C(n-2)/n + c(n/2-1)/2+(2/3)*c(n/3-1);
-
p=3; Table[Binomial[(p-1)n, n]/(((p-2)n+1)((p-2)n+2)) +If[OddQ[n], 0, Binomial[(p-1)n/2, n/2]/((p-2)n+2)]+Plus @@ Map[EulerPhi[ # ]Binomial[((p-1)n+1)/#, (n-1)/# ]/((p-1)n+1)&, Complement[Divisors[GCD[p, n-1]], {1}]], {n, 0, 20}] (* Robert A. Russell, Dec 11 2004 *)
Rest[Rest[CoefficientList[Series[(6 + (1 - 4 x)^(3/2) + 6 x - 3(1 - 4 x^2)^(1/2) - 4 (1 - 4 x^3)^(1/2))/12, {x, 0, 33}], x]]] (* Vincenzo Librandi, Nov 25 2015 *)
-
Cat(n)=if(n==floor(n),return(binomial(2*n,n)/(n+1)));0
for(n=2,100,print1(Cat(n-2)/n+Cat(n/2-1)/2+(2/3)*Cat(n/3-1),", ")) \\ Derek Orr, Feb 26 2017
A169808
Array T(n,k) read by antidiagonals: T(n,k) is the number of [n,k]-triangulations in the plane, n >= 0, k >= 0.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 3, 4, 5, 4, 4, 11, 14, 18, 16, 12, 28, 53, 69, 88, 78, 27, 91, 178, 295, 396, 489, 457, 82, 291, 685, 1196, 1867, 2503, 3071, 2938, 228, 1004, 2548, 5051, 8385, 12560, 16905, 20667, 20118, 733, 3471, 9876, 21018, 38078, 60736, 89038, 119571, 146381, 144113
Offset: 0
Array begins:
============================================================
n\k | 0 1 2 3 4 5 6
----+-------------------------------------------------------
0 | 1 1 1 3 4 12 27 ...
1 | 1 2 4 11 28 91 291 ...
2 | 1 5 14 53 178 685 2548 ...
3 | 4 18 69 295 1196 5051 21018 ...
4 | 16 88 396 1867 8385 38078 169918 ...
5 | 78 489 2503 12560 60736 290595 1367374 ...
6 | 457 3071 16905 89038 451613 2251035 11025626 ...
7 | 2938 20667 119571 652198 3429943 17658448 89328186 ...
...
- C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
- Andrew Howroyd, Table of n, a(n) for n = 0..1325
- G. Brinkmann and B. McKay, Plantri (program for generation of certain types of planar graph)
- William G. Brown, Enumeration of Triangulations of the Disk, Proc. Lond. Math. Soc. s3-14 (1964) 746-768.
- William G. Brown, Enumeration of Triangulations of the Disk, Proc. Lond. Math. Soc. s3-14 (1964) 746-768. [Annotated scanned copy].
- C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979. (Annotated scanned copy)
- Andrew Howroyd, PARI Program
a(29) corrected and terms a(36) and beyond from
Andrew Howroyd, Feb 22 2021
A262586
Square array T(n,m) (n>=0, m>=0) read by antidiagonals downwards giving number of rooted triangulations of type [n,m] up to orientation-preserving isomorphisms.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 4, 5, 6, 5, 6, 16, 21, 26, 24, 19, 48, 88, 119, 147, 133, 49, 164, 330, 538, 735, 892, 846, 150, 559, 1302, 2310, 3568, 4830, 5876, 5661, 442, 1952, 5005, 9882, 16500, 24596, 33253, 40490, 39556, 1424, 6872, 19504, 41715, 75387, 120582, 176354, 237336, 290020, 286000, 4522
Offset: 0
Array begins:
==============================================================
n\k | 0 1 2 3 4 5 6 ...
----+---------------------------------------------------------
0 | 1 1 1 4 6 19 49 ...
1 | 1 2 5 16 48 164 559 ...
2 | 1 6 21 88 330 1302 5005 ...
3 | 5 26 119 538 2310 9882 41715 ...
4 | 24 147 735 3568 16500 75387 338685 ...
5 | 133 892 4830 24596 120582 578622 2730728 ...
6 | 846 5876 33253 176354 900240 4493168 22037055 ...
7 | 5661 40490 237336 1298732 6849810 35286534 178606610 ...
...
The first few antidiagonals are:
1,
1,1,
1,2,1,
4,5,6,5,
6,16,21,26,24,
19,48,88,119,147,133,
49,164,330,538,735,892,846,
...
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (first 51 antidiagonals).
- Jean-François Alcover, Mathematica code
- W. G. Brown, Enumeration of Triangulations of the Disk, Proc. Lond. Math. Soc. s3-14 (1964) 746-768. [Annotated scanned copy]. See Table 1 (with a typo at G(n=1,m=6)).
- L. March and C. F. Earl, On Counting Architectural Plans, Environment and Planning B, 4 (1977), 57-80. See Table 2.
-
A262586 := proc(n,m)
BrownG(n,m) ; # procedure in A210696
end proc:
for d from 0 to 12 do
for n from 0 to d do
printf("%d,",A262586(n,d-n)) ;
end do:
end do: # R. J. Mathar, Oct 21 2015
-
(* See LINKS section. *)
-
\\ See Links in A169808 for PARI program file.
{ for(n=0, 7, for(k=0, 7, print1(OrientedTriangs(n,k), ", ")); print) } \\ Andrew Howroyd, Nov 23 2024
A341923
Array read by antidiagonals: T(n,k) is the number of 3-connected triangulations of a disk up to orientation-preserving isomorphisms with n interior nodes and k nodes on the boundary, n >= 1, k >= 3.
Original entry on oeis.org
1, 1, 1, 1, 2, 5, 1, 2, 10, 24, 1, 3, 16, 60, 133, 1, 3, 28, 122, 386, 846, 1, 4, 39, 242, 925, 2652, 5661, 1, 4, 58, 419, 2039, 7066, 18914, 39556, 1, 5, 78, 711, 4101, 17138, 54560, 139264, 286000, 1, 5, 106, 1128, 7801, 38166, 142802, 426462, 1048947, 2123329
Offset: 1
Array begins:
=====================================================
n\k | 3 4 5 6 7 8
----+------------------------------------------------
1 | 1 1 1 1 1 1 ...
2 | 1 2 2 3 3 4 ...
3 | 5 10 16 28 39 58 ...
4 | 24 60 122 242 419 711 ...
5 | 133 386 925 2039 4101 7801 ...
6 | 846 2652 7066 17138 38166 79908 ...
7 | 5661 18914 54560 142802 345099 782210 ...
8 | 39556 139264 426462 1188412 3067938 7433635 ...
...
A210696
Triangulations of the disk, G_{1,n}.
Original entry on oeis.org
1, 2, 5, 16, 48, 164, 559, 1952, 6872, 24520, 88006, 318444, 1158944, 4241688, 15598973, 57620596, 213680472, 795270644, 2969483214, 11121038100, 41763779054, 157235683780, 593355907790, 2243975358216, 8503404201874, 32283434698908, 122779218918272, 467713035691608
Offset: 0
-
BrownE := proc(r,n,m)
local j,s,p ;
if r < 1 then
return 0 ;
elif r = 1 then
return A146305(n,m) ;
elif r = 2 then
j := n mod 2 ; s := floor(n/2) ;
if type(m,'even') then
return 0 ;
end if;
p := (m+1)/2 ;
if p > 0 and s >= 0 then
return 2*(2*p)!*(4*s+2*p+2*j-1)!/p!/(p-1)!/s!/(3*s+2*p+2*j)! ;
else
return 0 ;
end if;
elif r =3 and (n mod 3) =0 and (m mod 3) = 0 then
s := n/3 ; p := m/3 ;
if p >= 0 and s >= 0 then
return (2*p+1)!*(4*s+2*p)!/p!/p!/s!/(3*s+2*p+1)! ;
else
return 0 ;
end if;
elif r >= 3 then
if ((n-1) mod r) =0 and ((m+3) mod r) =0 then
s := (n-1)/r ; p := (m+3)/r-1 ;
if p>=0 and s>=0 then
return (2*p+2)!*(4*s+2*p+1)!/p!/(p+1)!/s!/(3*s+2*p+2)! ;
else
return 0 ;
end if;
else
return 0 ;
end if;
else
return 0 ;
end if;
end proc:
BrownG := proc(n,m)
add( numtheory[phi](s)* BrownE(s,n,m), s = numtheory[divisors](m+3) ) ;
%/(m+3) ;
end proc:
A210696 := proc(n)
BrownG(1,n) ;
end proc:
seq(A210696(n),n=0..25) ;
-
(* See the link section. *)
A002713
Number of unrooted triangulations of the disk with n interior nodes and 3 nodes on the boundary.
Original entry on oeis.org
1, 1, 1, 4, 16, 78, 457, 2938, 20118, 144113, 1065328, 8068332, 62297808, 488755938, 3886672165, 31269417102, 254141551498, 2084129777764, 17228043363781, 143432427097935, 1201853492038096, 10129428318995227, 85826173629557200
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrew Howroyd, Table of n, a(n) for n = 0..500
- W. G. Brown, Enumeration of triangulations of the disk, Proc. London Math. Soc., 14 (1964), 746-768.
- W. G. Brown, Enumeration of Triangulations of the Disk, Proc. Lond. Math. Soc. s3-14 (1964) 746-768. [Annotated scanned copy]
- CombOS - Combinatorial Object Server, generate planar graphs
- C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979. (Annotated scanned copy)
A197271
a(n) = (10 / ((3*n+1)*(3*n+2))) * binomial(4*n, n).
Original entry on oeis.org
5, 2, 5, 20, 100, 570, 3542, 23400, 161820, 1159400, 8544965, 64448228, 495508780, 3872033900, 30680401500, 246041115600, 1993987498284, 16310419381080, 134519771966180, 1117653277802000, 9347742311507600, 78652006531467930, 665393840873409150, 5657273782416664200, 48318619683648190500
Offset: 0
- Michael De Vlieger, Table of n, a(n) for n = 0..1031
- William G. Brown, Enumeration of Triangulations of the Disk, Proc. Lond. Math. Soc. s3-14 (1964) 746-768.
- W. G. Brown, Enumeration of Triangulations of the Disk, Proc. Lond. Math. Soc. s3-14 (1964) 746-768. [Annotated scanned copy]
- K. A. Penson, K. Górska, A. Horzela, and G. H. E. Duchamp, Hausdorff moment problem for combinatorial numbers of Brown and Tutte: exact solution, arXiv:2209.06574 [math.CO], 2022.
- G. Schaeffer, A combinatorial interpretation of super-Catalan numbers of order two, (2001).
- William T. Tutte, On the enumeration of convex polyhedra, J. Combin. Theory Ser. B 28 (1980), 105-126.
-
Table[10/((3n+1)(3n+2)) Binomial[4n,n],{n,0,30}] (* Harvey P. Dale, Jan 27 2015 *)
A378336
Triangle read by rows: T(n,k) is the number of n node connected sensed planar maps with an external face and k triangular internal faces, n >= 3, 1 <= k <= 2*n - 5.
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 1, 2, 1, 0, 0, 2, 5, 5, 6, 5, 0, 0, 2, 8, 13, 20, 21, 26, 24, 0, 0, 0, 10, 28, 55, 79, 104, 119, 147, 133, 0, 0, 0, 7, 45, 126, 230, 360, 491, 625, 735, 892, 846, 0, 0, 0, 0, 44, 227, 561, 1066, 1682, 2430, 3241, 4074, 4830, 5876, 5661
Offset: 3
Triangle begins:
n\k | 1 2 3 4 5 6 7 8 9 10 11 12 13
----+----------------------------------------------------------
3 | 1;
4 | 0, 1, 1;
5 | 0, 1, 1, 2, 1;
6 | 0, 0, 2, 5, 5, 6, 5;
7 | 0, 0, 2, 8, 13, 20, 21, 26, 24;
8 | 0, 0, 0, 10, 28, 55, 79, 104, 119, 147, 133;
9 | 0, 0, 0, 7, 45, 126, 230, 360, 491, 625, 735, 892, 846;
...
A002710
Triangulations of the disk G_{n,1}.
Original entry on oeis.org
1, 2, 6, 26, 147, 892, 5876, 40490, 290020, 2136488, 16113254, 123878966, 968017330, 7670113856, 61510346760, 498496979754, 4077605379276, 33629943832280, 279413323740280, 2336935584712872, 19663001667901339, 166348460274745684, 1414318445894183076, 12079654921382780966
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A002711
Triangulations of the disk G_{n,2}.
Original entry on oeis.org
1, 5, 21, 119, 735, 4830, 33253, 237336, 1743588, 13114465, 100591491, 784428522, 6204258970, 49675571820, 402013608525, 3284214703056, 27055525967324, 224557688302164, 1876374953765620, 15774315150669075, 133345566025874055, 1132905339504465590, 9669675838370401035
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Showing 1-10 of 15 results.
Comments