A169808
Array T(n,k) read by antidiagonals: T(n,k) is the number of [n,k]-triangulations in the plane, n >= 0, k >= 0.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 3, 4, 5, 4, 4, 11, 14, 18, 16, 12, 28, 53, 69, 88, 78, 27, 91, 178, 295, 396, 489, 457, 82, 291, 685, 1196, 1867, 2503, 3071, 2938, 228, 1004, 2548, 5051, 8385, 12560, 16905, 20667, 20118, 733, 3471, 9876, 21018, 38078, 60736, 89038, 119571, 146381, 144113
Offset: 0
Array begins:
============================================================
n\k | 0 1 2 3 4 5 6
----+-------------------------------------------------------
0 | 1 1 1 3 4 12 27 ...
1 | 1 2 4 11 28 91 291 ...
2 | 1 5 14 53 178 685 2548 ...
3 | 4 18 69 295 1196 5051 21018 ...
4 | 16 88 396 1867 8385 38078 169918 ...
5 | 78 489 2503 12560 60736 290595 1367374 ...
6 | 457 3071 16905 89038 451613 2251035 11025626 ...
7 | 2938 20667 119571 652198 3429943 17658448 89328186 ...
...
- C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
- Andrew Howroyd, Table of n, a(n) for n = 0..1325
- G. Brinkmann and B. McKay, Plantri (program for generation of certain types of planar graph)
- William G. Brown, Enumeration of Triangulations of the Disk, Proc. Lond. Math. Soc. s3-14 (1964) 746-768.
- William G. Brown, Enumeration of Triangulations of the Disk, Proc. Lond. Math. Soc. s3-14 (1964) 746-768. [Annotated scanned copy].
- C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979. (Annotated scanned copy)
- Andrew Howroyd, PARI Program
a(29) corrected and terms a(36) and beyond from
Andrew Howroyd, Feb 22 2021
A262586
Square array T(n,m) (n>=0, m>=0) read by antidiagonals downwards giving number of rooted triangulations of type [n,m] up to orientation-preserving isomorphisms.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 4, 5, 6, 5, 6, 16, 21, 26, 24, 19, 48, 88, 119, 147, 133, 49, 164, 330, 538, 735, 892, 846, 150, 559, 1302, 2310, 3568, 4830, 5876, 5661, 442, 1952, 5005, 9882, 16500, 24596, 33253, 40490, 39556, 1424, 6872, 19504, 41715, 75387, 120582, 176354, 237336, 290020, 286000, 4522
Offset: 0
Array begins:
==============================================================
n\k | 0 1 2 3 4 5 6 ...
----+---------------------------------------------------------
0 | 1 1 1 4 6 19 49 ...
1 | 1 2 5 16 48 164 559 ...
2 | 1 6 21 88 330 1302 5005 ...
3 | 5 26 119 538 2310 9882 41715 ...
4 | 24 147 735 3568 16500 75387 338685 ...
5 | 133 892 4830 24596 120582 578622 2730728 ...
6 | 846 5876 33253 176354 900240 4493168 22037055 ...
7 | 5661 40490 237336 1298732 6849810 35286534 178606610 ...
...
The first few antidiagonals are:
1,
1,1,
1,2,1,
4,5,6,5,
6,16,21,26,24,
19,48,88,119,147,133,
49,164,330,538,735,892,846,
...
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (first 51 antidiagonals).
- Jean-François Alcover, Mathematica code
- W. G. Brown, Enumeration of Triangulations of the Disk, Proc. Lond. Math. Soc. s3-14 (1964) 746-768. [Annotated scanned copy]. See Table 1 (with a typo at G(n=1,m=6)).
- L. March and C. F. Earl, On Counting Architectural Plans, Environment and Planning B, 4 (1977), 57-80. See Table 2.
-
A262586 := proc(n,m)
BrownG(n,m) ; # procedure in A210696
end proc:
for d from 0 to 12 do
for n from 0 to d do
printf("%d,",A262586(n,d-n)) ;
end do:
end do: # R. J. Mathar, Oct 21 2015
-
(* See LINKS section. *)
-
\\ See Links in A169808 for PARI program file.
{ for(n=0, 7, for(k=0, 7, print1(OrientedTriangs(n,k), ", ")); print) } \\ Andrew Howroyd, Nov 23 2024
A146305
Array T(n,m) = 2*(2m+3)!*(4n+2m+1)!/(m!*(m+2)!*n!*(3n+2m+3)!) read by antidiagonals.
Original entry on oeis.org
1, 1, 2, 3, 5, 5, 13, 20, 21, 14, 68, 100, 105, 84, 42, 399, 570, 595, 504, 330, 132, 2530, 3542, 3675, 3192, 2310, 1287, 429, 16965, 23400, 24150, 21252, 16170, 10296, 5005, 1430, 118668, 161820, 166257, 147420, 115500, 78936, 45045, 19448, 4862, 857956
Offset: 0
The array starts at row n=0 and column m=0 as
.....1......2.......5......14.......42.......132
.....1......5......21......84......330......1287
.....3.....20.....105.....504.....2310.....10296
....13....100.....595....3192....16170.....78936
....68....570....3675...21252...115500....602316
...399...3542...24150..147420...844074...4628052
..2530..23400..166257.1057224..6301680..35939904
.16965.161820.1186680.7791168.47948670.282285432
Antidiagonal sums are
A000260(n+1).
-
A146305 := proc(n,m)
2*(2*m+3)!*(4*n+2*m+1)!/m!/(m+2)!/n!/(3*n+2*m+3)! ;
end proc:
for d from 0 to 13 do
for m from 0 to d do
printf("%d,", A146305(d-m,m)) ;
end do:
end do:
-
T[n_, m_] := 2*(2*m+3)!*(4*n+2*m+1)!/m!/(m+2)!/n!/(3*n+2*m+3)!; Table[T[n-m, m], {n, 0, 13}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jan 06 2014, after Maple *)
-
T(n,m)={2*(2*m+3)!*(4*n+2*m+1)!/(m!*(m+2)!*n!*(3*n+2*m+3)!)} \\ Andrew Howroyd, Feb 21 2021
A005028
Number of symmetric trivalent maps with n nodes.
Original entry on oeis.org
1, 2, 4, 12, 33, 102, 312, 1010, 3256, 10836, 36094, 122544, 417150, 1437712, 4970904, 17333772, 60638124, 213435264, 753520804, 2672606464, 9505230397, 33928264990, 121400935184, 435660446342, 1566809204928, 5648450745204, 20402191885146, 73842311224632
Offset: 3
- C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Antidiagonal sums of the array in
A169809.
A002712
Number of unrooted triangulations of a disk that have reflection symmetry with n interior nodes and 3 nodes on the boundary.
Original entry on oeis.org
1, 1, 1, 3, 8, 23, 68, 215, 680, 2226, 7327, 24607, 83060, 284046, 975950, 3383343, 11778308, 41269252, 145131502, 512881550, 1818259952, 6470758289, 23091680690, 82659905947, 296605398856, 1067012168350, 3846553544904, 13896522968160, 50296815014780, 182378110257354, 662384549806938
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrew Howroyd, Table of n, a(n) for n = 0..500
- William G. Brown, Enumeration of Triangulations of the Disk, Proc. Lond. Math. Soc. s3-14 (1964) 746-768.
- W. G. Brown, Enumeration of Triangulations of the Disk, Proc. Lond. Math. Soc. s3-14 (1964) 746-768. [Annotated scanned copy]
- C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979. (Annotated scanned copy)
-
Dc := proc(n,m) 2*(2*m+3)!*(4*n+2*m+1)!/m!/(m+2)!/n!/(3*n+2*m+3)! ; end:
A000260 := proc(n) Dc(n,0) ; end:
Dx2 := proc(nmax) add( A000260(n)*x^(2*n),n=0..nmax) ; end:
o := 20: Order := 2*o-1 : j := solve( J0=1+x*J0+x^2*J0*(1+x*J0/2)*series(J0^2-Dx2(o),x=0,2*o-1),J0) ;
for n from 0 to 2*o-2 do printf("%d,",coeftayl(j,x=0,n)) ; od: # R. J. Mathar, Oct 29 2008
-
seq[m_] := Module[{q}, q = Sum[x^(2n) Binomial[4n+2, n+1]/ ((2n+1)(3n+2)), {n, 0, Quotient[m, 2]}]; p = 1+O[x]; Do[p = 1 + x*p + x^2*p*(1+x*p/2)(p^2-q), {n, 1, m}]; CoefficientList[p, x]];
seq[30] (* Jean-François Alcover, Apr 25 2023, after Andrew Howroyd *)
-
seq(n)={my(q=sum(n=0, n\2, x^(2*n)*binomial(4*n+2, n+1)/((2*n+1)*(3*n+2))), p=1+O(x)); for(n=1, n, p = 1 + x*p + x^2*p*(1 + x*p/2)*(p^2 - q)); Vec(p)} \\ Andrew Howroyd, Feb 24 2021
Name clarified and terms a(27) and beyond from
Andrew Howroyd, Feb 24 2021
A005505
Number of unrooted triangulations with reflection symmetry of a quadrilateral with n internal nodes.
Original entry on oeis.org
1, 2, 4, 10, 29, 86, 266, 844, 2742, 9032, 30202, 101988, 347914, 1195500, 4138310, 14405848, 50428392, 177321636, 626250990, 2219876580, 7896651847, 28176271634, 100830069380, 361757157484, 1301092926454, 4689840961196, 16940093338162, 61305930699382
Offset: 0
- C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrew Howroyd, Table of n, a(n) for n = 0..500
- C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979. (Annotated scanned copy)
- C. F. Earl & N. J. A. Sloane, Correspondence, 1980-1981
Column k=1 of the array in
A169809.
Name clarified and terms a(13) and beyond from
Andrew Howroyd, Feb 21 2021
A005506
Number of unrooted triangulations with reflection symmetry of a pentagon with n internal nodes.
Original entry on oeis.org
1, 3, 7, 19, 57, 176, 557, 1806, 5954, 19897, 67235, 229366, 788688, 2730810, 9512107, 33309444, 117190184, 414039578, 1468349782, 5225201321, 18651958885, 66769742002, 239643164237, 862168692562, 3108716586702, 11232127258416, 40660388117380, 147453014455094
Offset: 0
- C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979. (Annotated scanned copy)
- C. F. Earl & N. J. A. Sloane, Correspondence, 1980-1981
Column k=2 of the array in
A169809.
Name clarified and terms a(12) and beyond from
Andrew Howroyd, Feb 21 2021
A005507
Number of unrooted triangulations with reflection symmetry of a hexagon with n internal nodes.
Original entry on oeis.org
2, 6, 18, 52, 166, 524, 1722, 5664, 19072, 64408, 220676, 758864, 2634734, 9180872, 32208376, 113371636, 401067522, 1423073892, 5068961452, 18103192360, 64853607912, 232872927444, 838311889890, 3023961593292, 10931277735230, 39586258360246, 143617299291242
Offset: 0
- C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979. (Annotated scanned copy)
- C. F. Earl & N. J. A. Sloane, Correspondence, 1980-1981
Column k=3 of the array in
A169809.
Name clarified and terms a(11) and beyond from
Andrew Howroyd, Feb 21 2021
A005508
Number of unrooted triangulations with reflection symmetry of a disk with one internal node and n+3 nodes on the boundary.
Original entry on oeis.org
1, 2, 3, 6, 8, 18, 23, 56, 70, 180, 222, 594, 726, 2002, 2431, 6864, 8294, 23868, 28730, 83980, 100776, 298452, 357238, 1069776, 1277788, 3863080, 4605980, 14040810, 16715250, 51325650, 61020495, 188574240, 223931910, 695987820, 825632610, 2579248980
Offset: 0
- C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979. (Annotated scanned copy)
- C. F. Earl & N. J. A. Sloane, Correspondence, 1980-1981
Name clarified and terms a(7) and beyond from
Andrew Howroyd, Feb 22 2021
A005509
Number of unrooted triangulations with reflection symmetry of a disk with 2 internal nodes and n+3 nodes on the boundary.
Original entry on oeis.org
1, 4, 7, 18, 26, 68, 91, 248, 318, 900, 1122, 3278, 4004, 12012, 14443, 44304, 52598, 164424, 193154, 613700, 714476, 2302344, 2659582, 8677072, 9954860, 32836180, 37442160, 124715430, 141430680, 475237500, 536257995, 1816267680, 2040199590, 6959878200
Offset: 0
- C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrew Howroyd, Table of n, a(n) for n = 0..500
- C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979. (Annotated scanned copy)
- C. F. Earl & N. J. A. Sloane, Correspondence, 1980-1981
Showing 1-10 of 10 results.
Comments