cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A169808 Array T(n,k) read by antidiagonals: T(n,k) is the number of [n,k]-triangulations in the plane, n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 4, 5, 4, 4, 11, 14, 18, 16, 12, 28, 53, 69, 88, 78, 27, 91, 178, 295, 396, 489, 457, 82, 291, 685, 1196, 1867, 2503, 3071, 2938, 228, 1004, 2548, 5051, 8385, 12560, 16905, 20667, 20118, 733, 3471, 9876, 21018, 38078, 60736, 89038, 119571, 146381, 144113
Offset: 0

Views

Author

N. J. A. Sloane, May 25 2010

Keywords

Comments

"A closed bounded region in the plane divided into triangular regions with k+3 vertices on the boundary and n internal vertices is said to be a triangular map of type [n,k]." It is a [n,k]-triangulation if there are no multiple edges.
T(n,k) is the number of floor plan arrangements represented by 3-connected trivalent maps with n internal rooms and k+3 rooms adjacent to the outside.
"... may be evaluated from the results given by Brown."
The initial terms of this sequence can also be computed using the tool "plantri", in particular the command "./plantri -u -v -P -c2m2 [n]" will compute values for a diagonal. The '-c2' and '-m2' options indicate graphs must be biconnected and with minimum vertex degree 2. - Andrew Howroyd, Feb 22 2021

Examples

			Array begins:
============================================================
n\k |    0     1      2      3       4        5        6
----+-------------------------------------------------------
  0 |    1     1      1      3       4       12       27 ...
  1 |    1     2      4     11      28       91      291 ...
  2 |    1     5     14     53     178      685     2548 ...
  3 |    4    18     69    295    1196     5051    21018 ...
  4 |   16    88    396   1867    8385    38078   169918 ...
  5 |   78   489   2503  12560   60736   290595  1367374 ...
  6 |  457  3071  16905  89038  451613  2251035 11025626 ...
  7 | 2938 20667 119571 652198 3429943 17658448 89328186 ...
  ...
		

References

  • C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.

Crossrefs

Columns k=0..3 are A002713, A005500, A005501, A005502.
Rows n=0..2 are A000207, A005503, A005504.
Antidiagonal sums give A005027.
Cf. A146305 (rooted), A169809 (achiral), A262586 (oriented).

Programs

Formula

T(n,k) = (A262586(n,k) + A169809(n,k)) / 2. - Andrew Howroyd, Feb 22 2021

Extensions

Edited by Andrew Howroyd, Feb 22 2021
a(29) corrected and terms a(36) and beyond from Andrew Howroyd, Feb 22 2021

A262586 Square array T(n,m) (n>=0, m>=0) read by antidiagonals downwards giving number of rooted triangulations of type [n,m] up to orientation-preserving isomorphisms.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 4, 5, 6, 5, 6, 16, 21, 26, 24, 19, 48, 88, 119, 147, 133, 49, 164, 330, 538, 735, 892, 846, 150, 559, 1302, 2310, 3568, 4830, 5876, 5661, 442, 1952, 5005, 9882, 16500, 24596, 33253, 40490, 39556, 1424, 6872, 19504, 41715, 75387, 120582, 176354, 237336, 290020, 286000, 4522
Offset: 0

Views

Author

N. J. A. Sloane, Oct 20 2015

Keywords

Examples

			Array begins:
 ==============================================================
 n\k |    0     1      2       3       4        5         6 ...
 ----+---------------------------------------------------------
   0 |    1     1      1       4       6       19        49 ...
   1 |    1     2      5      16      48      164       559 ...
   2 |    1     6     21      88     330     1302      5005 ...
   3 |    5    26    119     538    2310     9882     41715 ...
   4 |   24   147    735    3568   16500    75387    338685 ...
   5 |  133   892   4830   24596  120582   578622   2730728 ...
   6 |  846  5876  33253  176354  900240  4493168  22037055 ...
   7 | 5661 40490 237336 1298732 6849810 35286534 178606610 ...
   ...
The first few antidiagonals are:
  1,
  1,1,
  1,2,1,
  4,5,6,5,
  6,16,21,26,24,
  19,48,88,119,147,133,
  49,164,330,538,735,892,846,
  ...
		

Crossrefs

Columns 0..2 are A002709, A002710, A002711.
Rows 0..3 are A001683, A210696, A005498, A005499.
Antidiagonal sums are A341855.
Cf. A169808 (unoriented), A169809 (achiral).

Programs

  • Maple
    A262586 := proc(n,m)
        BrownG(n,m) ; # procedure in A210696
    end proc:
    for d from 0 to 12 do
        for n from 0 to d do
            printf("%d,",A262586(n,d-n)) ;
        end do:
    end do: # R. J. Mathar, Oct 21 2015
  • Mathematica
    (* See LINKS section. *)
  • PARI
    \\ See Links in A169808 for PARI program file.
    { for(n=0, 7, for(k=0, 7, print1(OrientedTriangs(n,k), ", ")); print) } \\ Andrew Howroyd, Nov 23 2024

Formula

Brown (Eq. 6.3) gives a formula.

A146305 Array T(n,m) = 2*(2m+3)!*(4n+2m+1)!/(m!*(m+2)!*n!*(3n+2m+3)!) read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 3, 5, 5, 13, 20, 21, 14, 68, 100, 105, 84, 42, 399, 570, 595, 504, 330, 132, 2530, 3542, 3675, 3192, 2310, 1287, 429, 16965, 23400, 24150, 21252, 16170, 10296, 5005, 1430, 118668, 161820, 166257, 147420, 115500, 78936, 45045, 19448, 4862, 857956
Offset: 0

Views

Author

R. J. Mathar, Oct 29 2008

Keywords

Comments

T(n,m) is the number of rooted nonseparable (2-connected) triangulations of the disk with n internal nodes and 3 + m nodes on the external face. The triangulation has 2*n + m + 1 triangles and 3*(n+1) + 2*m edges. - Andrew Howroyd, Feb 21 2021

Examples

			The array starts at row n=0 and column m=0 as
.....1......2.......5......14.......42.......132
.....1......5......21......84......330......1287
.....3.....20.....105.....504.....2310.....10296
....13....100.....595....3192....16170.....78936
....68....570....3675...21252...115500....602316
...399...3542...24150..147420...844074...4628052
..2530..23400..166257.1057224..6301680..35939904
.16965.161820.1186680.7791168.47948670.282285432
		

Crossrefs

Columns m=0..3 are A000260, A197271(n+1), A341853, A341854.
Rows n=0..2 are A000108(n+1), A002054(n+1) and A000917.
Antidiagonal sums are A000260(n+1).
Cf. A169808 (unrooted), A169809 (achiral), A262586 (oriented).

Programs

  • Maple
    A146305 := proc(n,m)
        2*(2*m+3)!*(4*n+2*m+1)!/m!/(m+2)!/n!/(3*n+2*m+3)! ;
    end proc:
    for d from 0 to 13 do
        for m from 0 to d do
            printf("%d,", A146305(d-m,m)) ;
        end do:
    end do:
  • Mathematica
    T[n_, m_] := 2*(2*m+3)!*(4*n+2*m+1)!/m!/(m+2)!/n!/(3*n+2*m+3)!; Table[T[n-m, m], {n, 0, 13}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jan 06 2014, after Maple *)
  • PARI
    T(n,m)={2*(2*m+3)!*(4*n+2*m+1)!/(m!*(m+2)!*n!*(3*n+2*m+3)!)} \\ Andrew Howroyd, Feb 21 2021

A005028 Number of symmetric trivalent maps with n nodes.

Original entry on oeis.org

1, 2, 4, 12, 33, 102, 312, 1010, 3256, 10836, 36094, 122544, 417150, 1437712, 4970904, 17333772, 60638124, 213435264, 753520804, 2672606464, 9505230397, 33928264990, 121400935184, 435660446342, 1566809204928, 5648450745204, 20402191885146, 73842311224632
Offset: 3

Views

Author

Keywords

References

  • C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Antidiagonal sums of the array in A169809.
Cf. A005027.

Extensions

Terms a(11) and beyond from Andrew Howroyd, Feb 22 2021

A002712 Number of unrooted triangulations of a disk that have reflection symmetry with n interior nodes and 3 nodes on the boundary.

Original entry on oeis.org

1, 1, 1, 3, 8, 23, 68, 215, 680, 2226, 7327, 24607, 83060, 284046, 975950, 3383343, 11778308, 41269252, 145131502, 512881550, 1818259952, 6470758289, 23091680690, 82659905947, 296605398856, 1067012168350, 3846553544904, 13896522968160, 50296815014780, 182378110257354, 662384549806938
Offset: 0

Views

Author

Keywords

Comments

These are also called [n,0]-triangulations.

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=0 of A169809.

Programs

  • Maple
    Dc := proc(n,m) 2*(2*m+3)!*(4*n+2*m+1)!/m!/(m+2)!/n!/(3*n+2*m+3)! ; end:
    A000260 := proc(n) Dc(n,0) ; end:
    Dx2 := proc(nmax) add( A000260(n)*x^(2*n),n=0..nmax) ; end:
    o := 20: Order := 2*o-1 : j := solve( J0=1+x*J0+x^2*J0*(1+x*J0/2)*series(J0^2-Dx2(o),x=0,2*o-1),J0) ;
    for n from 0 to 2*o-2 do printf("%d,",coeftayl(j,x=0,n)) ; od: # R. J. Mathar, Oct 29 2008
  • Mathematica
    seq[m_] := Module[{q}, q = Sum[x^(2n) Binomial[4n+2, n+1]/ ((2n+1)(3n+2)), {n, 0, Quotient[m, 2]}]; p = 1+O[x]; Do[p = 1 + x*p + x^2*p*(1+x*p/2)(p^2-q), {n, 1, m}]; CoefficientList[p, x]];
    seq[30] (* Jean-François Alcover, Apr 25 2023, after Andrew Howroyd *)
  • PARI
    seq(n)={my(q=sum(n=0, n\2, x^(2*n)*binomial(4*n+2, n+1)/((2*n+1)*(3*n+2))), p=1+O(x)); for(n=1, n, p = 1 + x*p + x^2*p*(1 + x*p/2)*(p^2 - q)); Vec(p)} \\ Andrew Howroyd, Feb 24 2021

Extensions

More terms from R. J. Mathar, Oct 29 2008
Name clarified and terms a(27) and beyond from Andrew Howroyd, Feb 24 2021

A005505 Number of unrooted triangulations with reflection symmetry of a quadrilateral with n internal nodes.

Original entry on oeis.org

1, 2, 4, 10, 29, 86, 266, 844, 2742, 9032, 30202, 101988, 347914, 1195500, 4138310, 14405848, 50428392, 177321636, 626250990, 2219876580, 7896651847, 28176271634, 100830069380, 361757157484, 1301092926454, 4689840961196, 16940093338162, 61305930699382
Offset: 0

Views

Author

Keywords

Comments

These are also called [n,1]-triangulations.

References

  • C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=1 of the array in A169809.

Formula

a(n) = 2 * A005500(n) - A002710(n) (based on Max Alekseyev's formula, cf. A005500).

Extensions

a(7)-a(12) from Altug Alkan and Manfred Scheucher, Mar 08 2018
Name clarified and terms a(13) and beyond from Andrew Howroyd, Feb 21 2021

A005506 Number of unrooted triangulations with reflection symmetry of a pentagon with n internal nodes.

Original entry on oeis.org

1, 3, 7, 19, 57, 176, 557, 1806, 5954, 19897, 67235, 229366, 788688, 2730810, 9512107, 33309444, 117190184, 414039578, 1468349782, 5225201321, 18651958885, 66769742002, 239643164237, 862168692562, 3108716586702, 11232127258416, 40660388117380, 147453014455094
Offset: 0

Views

Author

Keywords

Comments

These are also called [n,2]-triangulations.

References

  • C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=2 of the array in A169809.

Formula

a(n) = 2 * A005501(n) - A002711(n) (based on Max Alekseyev's formula, cf. A005501).

Extensions

a(6)-a(11) from Altug Alkan and Manfred Scheucher, Mar 08 2018
Name clarified and terms a(12) and beyond from Andrew Howroyd, Feb 21 2021

A005507 Number of unrooted triangulations with reflection symmetry of a hexagon with n internal nodes.

Original entry on oeis.org

2, 6, 18, 52, 166, 524, 1722, 5664, 19072, 64408, 220676, 758864, 2634734, 9180872, 32208376, 113371636, 401067522, 1423073892, 5068961452, 18103192360, 64853607912, 232872927444, 838311889890, 3023961593292, 10931277735230, 39586258360246, 143617299291242
Offset: 0

Views

Author

Keywords

Comments

These are also called [n,3]-triangulations.

References

  • C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=3 of the array in A169809.

Formula

a(n) = 2 * A005502(n) - A005495(n) (based on Max Alekseyev's formula, cf. A005500 and A005501).

Extensions

a(5)-a(10) from Altug Alkan and Manfred Scheucher, Mar 08 2018
Name clarified and terms a(11) and beyond from Andrew Howroyd, Feb 21 2021

A005508 Number of unrooted triangulations with reflection symmetry of a disk with one internal node and n+3 nodes on the boundary.

Original entry on oeis.org

1, 2, 3, 6, 8, 18, 23, 56, 70, 180, 222, 594, 726, 2002, 2431, 6864, 8294, 23868, 28730, 83980, 100776, 298452, 357238, 1069776, 1277788, 3863080, 4605980, 14040810, 16715250, 51325650, 61020495, 188574240, 223931910, 695987820, 825632610, 2579248980
Offset: 0

Views

Author

Keywords

Comments

These are also called [1,n]-triangulations.

References

  • C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row n=1 of the array in A169809.

Extensions

Name clarified and terms a(7) and beyond from Andrew Howroyd, Feb 22 2021

A005509 Number of unrooted triangulations with reflection symmetry of a disk with 2 internal nodes and n+3 nodes on the boundary.

Original entry on oeis.org

1, 4, 7, 18, 26, 68, 91, 248, 318, 900, 1122, 3278, 4004, 12012, 14443, 44304, 52598, 164424, 193154, 613700, 714476, 2302344, 2659582, 8677072, 9954860, 32836180, 37442160, 124715430, 141430680, 475237500, 536257995, 1816267680, 2040199590, 6959878200
Offset: 0

Views

Author

Keywords

References

  • C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row n=2 of the array in A169809.

Extensions

Terms a(6) and beyond from Andrew Howroyd, Feb 22 2021
Showing 1-10 of 10 results.