cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A146312 a(n) = -cos((2*n-1)*arcsin(sqrt(3)))^2 = -1 + cosh((2*n-1)*arcsinh(sqrt(2)))^2.

Original entry on oeis.org

2, 242, 23762, 2328482, 228167522, 22358088722, 2190864527282, 214682365584962, 21036680962799042, 2061380051988721202, 201994208413931878802, 19793371044513335401442, 1939548368153892937462562, 190055946708036994535929682, 18623543229019471571583646322
Offset: 1

Views

Author

Artur Jasinski, Oct 29 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Round[ -N[Cos[(2 n - 1) ArcSin[Sqrt[3]]], 300]^2], {n, 1, 50}]
    LinearRecurrence[{99, -99, 1}, {2, 242, 23762}, 50] (* G. C. Greubel, Jul 03 2017 *)
  • PARI
    Vec(-2*x*(x^2+22*x+1) / ((x-1)*(x^2-98*x+1)) + O(x^100)) \\ Colin Barker, Oct 26 2014

Formula

General formula: cosh((2*n-1)*arcsinh(sqrt(2)))^2 + cos((2*n-1)*arcsin(sqrt(3)))^2 = 1.
a(n) = A146313(n) - 1.
From Colin Barker, Oct 26 2014: (Start)
a(n) = 99*a(n-1) - 99*a(n-2) + a(n-3).
G.f.: -2*x*(x^2+22*x+1) / ((x-1)*(x^2-98*x+1)). (End)
a(n) = 2*A054320(n-1)^2. - Jon E. Schoenfield, Jun 08 2018

Extensions

More terms from Colin Barker, Oct 26 2014