A146328 Numbers k such that the continued fraction of (1 + sqrt(k))/2 has period 3.
17, 37, 61, 65, 101, 145, 185, 197, 257, 317, 325, 401, 461, 485, 557, 577, 677, 773, 785, 901, 985, 1025, 1129, 1157, 1297, 1429, 1445, 1601, 1765, 1877, 1901, 1937, 2117, 2285, 2305, 2501, 2705, 2873, 2917, 3077, 3137, 3281, 3293, 3341, 3365, 3601, 3845, 4045, 4097, 4357, 4597, 4625, 4901
Offset: 1
Keywords
Examples
a(1) = 3 because continued fraction of (1+sqrt(17))/2 = 2, 1, 1, 3, 1, 1, 3, ... has period (1,1,3) length 3.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A146326 := proc(n) if not issqr(n) then numtheory[cfrac]( (1+sqrt(n))/2, 'periodic','quotients') ; nops(%[2]) ; else 0 ; fi; end: isA146328 := proc(n) RETURN(A146326(n) = 3) ; end: for n from 2 to 1801 do if isA146328(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Sep 06 2009
-
Mathematica
okQ[n_] := Module[{cf = ContinuedFraction[(1 + Sqrt[n])/2]}, Length[cf] > 1 && Length[cf[[2]]] == 3]; Select[Range[5000], okQ]
Extensions
803 removed by R. J. Mathar, Sep 06 2009
Extended by T. D. Noe, Mar 09 2011
Comments