A146329 Numbers k such that continued fraction of (1 + sqrt(k))/2 has period 4.
6, 7, 8, 14, 20, 23, 24, 28, 32, 33, 34, 42, 47, 48, 52, 55, 60, 62, 69, 72, 75, 78, 79, 80, 95, 98, 110, 119, 120, 126, 133, 135, 136, 138, 140, 141, 142, 156, 167, 168, 174, 180, 189, 194, 205, 210, 213, 215, 219, 220, 222, 223, 224, 248, 252, 254, 272, 287, 288
Offset: 1
Keywords
Examples
a(2) = 7 because continued fraction of (1 + sqrt(7))/2 = 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, ... has period (1,1,4,1) length 4.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
isA146329 := proc(n) RETURN(A146326(n) = 4) ; end: for n from 2 to 400 do if isA146329(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Sep 06 2009
-
Mathematica
cf4Q[n_]:=Module[{s=(1+Sqrt[n])/2},If[IntegerQ[s],1,Length[ ContinuedFraction[ s][[2]]]]==4]; Select[Range[300],cf4Q] (* Harvey P. Dale, Dec 14 2017 *)
Extensions
39, 68, 150, 155, etc. removed by R. J. Mathar, Sep 06 2009
Comments