A146331 Numbers k such that continued fraction of (1 + sqrt(k))/2 has period 6.
18, 19, 22, 38, 39, 44, 54, 57, 58, 59, 66, 68, 70, 74, 86, 102, 105, 107, 111, 112, 114, 115, 130, 131, 146, 147, 148, 150, 159, 164, 175, 178, 183, 186, 187, 198, 203, 253, 258, 260, 264, 267, 273, 275, 278, 294, 303, 308, 309, 326, 327, 330, 333, 341, 346
Offset: 1
Keywords
Examples
a(2) = 19 because continued fraction of (1+sqrt(19))/2 = 2, 1, 2, 8, 2, 1, 3, 1, 2, 8, 2, 1, 3, 1, 2, 8, 2, 1, 3, 1, 2, 8, 2, 1, 3, 1, 2, 8, 2, 1 ... has period (1, 2, 8, 2, 1, 3) length 6.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harvey P. Dale)
Programs
-
Maple
A146326 := proc(n) if not issqr(n) then numtheory[cfrac]( (1+sqrt(n))/2, 'periodic','quotients') ; nops(%[2]) ; else 0 ; fi; end: isA146331 := proc(n) RETURN(A146326(n) = 6) ; end: for n from 2 to 380 do if isA146331(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Sep 06 2009
-
Mathematica
cf6Q[n_]:=Module[{c=(1+Sqrt[n])/2},!IntegerQ[c]&&Length[ContinuedFraction[ c][[2]]]==6]; Select[Range[400],cf6Q] (* Harvey P. Dale, May 30 2012 *)
Extensions
39, 68, 150, 203, etc. added by R. J. Mathar, Sep 06 2009
Comments