A146339 Numbers k such that the continued fraction of (1 + sqrt(k))/2 has period 16.
172, 191, 217, 232, 249, 310, 311, 329, 343, 344, 355, 369, 391, 393, 416, 428, 431, 446, 496, 513, 520, 524, 536, 537, 550, 559, 589, 647, 655, 679, 682, 686, 700, 704, 748, 760, 768, 775, 802, 816, 848, 851, 872, 927, 995, 996, 1036, 1058, 1079, 1080, 1120, 1136
Offset: 1
Keywords
Examples
a(1) = 191 because continued fraction of (1+sqrt(191))/2 = 7, 2, 2, 3, 1, 1, 4, 1, 26, 1, 4, 1, 1, 3, 2, 2, 13, 2, 2, 3, 1, 1, 4, 1, 26, 1, 4, 1, 1, 3, 2, 2, 13, 2, 2, 3, 1, 1, 4, 1, 26... has period (2, 2, 3, 1, 1, 4, 1, 26, 1, 4, 1, 1, 3, 2, 2, 13) length 16.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A146326 := proc(n) if not issqr(n) then numtheory[cfrac]( (1+sqrt(n))/2, 'periodic','quotients') ; nops(%[2]) ; else 0 ; fi; end: isA146339 := proc(n) RETURN(A146326(n) = 16) ; end: for n from 2 to 1000 do if isA146339(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Sep 06 2009
-
Mathematica
Select[Range[1000], !IntegerQ @ Sqrt[#] && Length[ContinuedFraction[(1 + Sqrt[#])/2][[2]]] == 16 &] (* Amiram Eldar, Mar 31 2020 *)
Extensions
311 inserted, sequence extended by R. J. Mathar, Sep 06 2009
More terms from Amiram Eldar, Mar 31 2020
Comments