A146343 a(n) = smallest number k such that the continued fraction of (1 + sqrt(k))/2 has period n.
5, 2, 17, 6, 41, 18, 89, 31, 73, 43, 265, 94, 421, 118, 193, 172, 521, 106, 241, 151, 337, 489, 433, 268, 929, 211, 409, 334, 673, 379, 937, 463, 601, 331, 769, 721, 2297, 619, 1033, 718, 1777, 394, 1753, 604, 1993, 634, 1249, 526, 3649, 694
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
Programs
-
Maple
A := proc(n) local c; try c := numtheory[cfrac](1/2+sqrt(n)/2,'periodic','quotients') ; RETURN(nops(c[2]) ); catch: RETURN(-1) end try ; end: A146343 := proc(n) for k from 1 do if A(k) = n then RETURN(k); fi; od: end: for n from 1 to 30 do printf("%d,",A146343(n)) ; od: # R. J. Mathar, Nov 08 2008
-
Mathematica
nn = 50; t = Table[0, {nn}]; cnt = 0; k = 1; While[cnt < nn, k++; cf = ContinuedFraction[(1 + Sqrt[k])/2]; If[Head[cf[[-1]]] === List, len = Length[cf[[-1]]]; If[len <= nn && t[[len]] == 0, t[[len]] = k; cnt++]]]; t
Extensions
a(6) changed to 18, a(25) to 929, a(28) to 334 by R. J. Mathar, Nov 08 2008
Extended by T. D. Noe, Mar 22 2011