cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A146356 Primes p such that continued fraction of (1 + sqrt(p))/2 has period 11: primes in A146335.

Original entry on oeis.org

541, 593, 661, 701, 857, 1061, 1109, 1217, 1237, 1709, 1733, 1949, 2333, 2557, 2957, 3229, 3677, 3701, 4373, 5081, 5237, 5309, 6133, 7013, 8693, 9533, 10333, 10853, 12437, 14197, 19213, 20693, 21101, 23173, 29753, 30949, 33797, 36677, 37781, 37993, 41813
Offset: 1

Views

Author

Artur Jasinski, Oct 30 2008

Keywords

Crossrefs

Programs

  • Maple
    A146326 := proc(n) if not issqr(n) then numtheory[cfrac]( (1+sqrt(n))/2, 'periodic','quotients') ; nops(%[2]) ; else 0 ; fi; end: isA146356 := proc(n) RETURN(isprime(n) and A146326(n) = 11) ; end: for n from 2 to 30000 do if isA146356(n) then printf("%d,\n",n) ; fi; od: # R. J. Mathar, Sep 06 2009
  • Mathematica
    Select[Prime[Range[5000]],Length[ContinuedFraction[(1+Sqrt[#])/2][[2]]] == 11&] (* Harvey P. Dale, Apr 27 2016 *)

Extensions

1721 and 6491 removed by R. J. Mathar, Sep 06 2009
More terms from Harvey P. Dale, Apr 27 2016