cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A140716 Blocky integers, i.e., integers m > 1 such that there is a run of m consecutive integer squares the average of which is a square.

Original entry on oeis.org

7, 25, 31, 49, 55, 73, 79, 97, 103, 121, 127, 145, 151, 169, 175, 193, 199, 217, 223, 241, 247, 265, 271, 289, 295, 313, 319, 337, 343, 361, 367, 385, 391, 409, 415, 433, 439, 457, 463, 481, 487, 505, 511, 529, 535, 553, 559, 577, 583
Offset: 1

Views

Author

Emeric Deutsch, Jun 04 2008

Keywords

Comments

For a blocky m, a starting k^2 in the required run of squares is obtained by taking k = a - b - (m-1)/2, where a*b = (m^2 - 1)/48.
Positive integers k such that hypergeometric([k/8, (8-k)/8], [1/2], 3/4) = 2*cos(Pi/4). - Artur Jasinski, Oct 30 2008
Numbers > 1 that are congruent to {1, 7} mod 24. - David Lovler, Aug 10 2022

Examples

			7 is blocky because ((-3)^2 + (-2)^2 + (-1)^2 + 0^2 + 1^2 + 2^2 + 3^2)/7 = 28/7 = 4 = 2^2.
		

Crossrefs

Cf. A146502-A146522. - Artur Jasinski, Oct 30 2008

Programs

  • Maple
    a:=proc(n) if `mod`(n,24)=1 or `mod`(n,24)=-1 or `mod`(n,24)=7 or `mod`(n,24) =-7 then n else end if end proc: seq(a(n),n=2..600);
  • Mathematica
    Table[12*n - 2 + 3*(-1)^n, {n, 1, 50}] (* Vaclav Kotesovec, Nov 14 2017 *)
  • PARI
    a(n) = 12*n - 2 + 3*(-1)^n \\ David Lovler, Aug 09 2022

Formula

n is blocky if and only if n>1 and n (mod 24) = 1 or -1 or 7 or -7.
a(n) = 8*(s-1)+1 for n odd, a(n) = 8*(s-1)+7 for n even. - Artur Jasinski, Oct 30 2008
From R. J. Mathar, Nov 25 2008: (Start)
G.f.: x*(7+18*x-x^2)/((1+x)*(1-x)^2).
a(n) = a(n-2) + 24 = 12n - 2 + 3*(-1)^n. (End)
a(n) = a(n-1) + a(n-2) - a(n-3). - Colin Barker, May 12 2012
E.g.f.: (12*x - 2)*exp(x) + 3*exp(-x) - 1. - David Lovler, Aug 09 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = 1 - (1+sqrt(2)/2)*Pi/12 - arccoth(sqrt(3))/(2*sqrt(3)) - arcsinh(sqrt(2))/(2*sqrt(6)). - Amiram Eldar, Aug 23 2022

A146089 Number of n X n arrays of squares of integers summing to 4 with every element equal to at least one neighbor.

Original entry on oeis.org

1, 32, 219, 698, 1657, 3336, 6023, 10054, 15813, 23732, 34291, 48018, 65489, 87328, 114207, 146846, 186013, 232524
Offset: 2

Views

Author

R. H. Hardin Apr 14 2009

Keywords

Crossrefs

Showing 1-2 of 2 results.