A146558 Number of order n permutations without collinear triples modulo n.
1, 2, 0, 16, 0, 72, 0, 256, 0, 0, 0, 2304, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Examples
For n=4, there are a(4)=16 permutations without collinear triples: [1, 2, 4, 3], [1, 3, 2, 4], [1, 3, 4, 2], [1, 4, 2, 3], [2, 1, 3, 4], [2, 3, 1, 4], [2, 4, 1, 3], [2, 4, 3, 1], [3, 1, 2, 4], [3, 1, 4, 2], [3, 2, 4, 1], [3, 4, 2, 1], [4, 1, 3, 2], [4, 2, 1, 3], [4, 2, 3, 1], [4, 3, 1, 2]
Links
- L. Li, Collinear triples in permutations, arXiv:0802.0572 [math.CO], 2008.
Programs
-
PARI
{ a(n) = local(p,r,g); r=0; for(j=1,n!, p=numtoperm(n,j); g=1; forvec(v=vector(3,i,[1,n]), if(matdet([1,v[1],p[v[1]];1,v[2],p[v[2]];1,v[3],p[v[3]]])%n==0, g=0; break), 2); if(g,r++)); r }
Formula
For prime p>=3, a(p) = 0.
Extensions
Edited by Max Alekseyev, Jun 21 2010
a(14)-a(29) from Bert Dobbelaere, Mar 15 2020