cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A146568 Coefficients of Pascal's triangle polynomial minus MacMahon polynomial A060187 with a power of x divided out: q(x,n)=2^n*(1 - x)^(n + 1)* LerchPhi[x, -n, 1/2]; p(x,n)=((x+1)^n-q(x,n))/x.

Original entry on oeis.org

4, 20, 20, 72, 224, 72, 232, 1672, 1672, 232, 716, 10528, 23528, 10528, 716, 2172, 60636, 259688, 259688, 60636, 2172, 6544, 331584, 2485232, 4674944, 2485232, 331584, 6544, 19664, 1756304, 21707888, 69413168, 69413168, 21707888, 1756304
Offset: 2

Views

Author

Roger L. Bagula, Nov 01 2008

Keywords

Comments

First elements in each row are: 3^n - 2*n - 1 (A061981).

Examples

			Triangle starts:
{4},
{20, 20},
{72, 224, 72},
{232, 1672, 1672, 232},
{716, 10528, 23528, 10528, 716},
{2172, 60636, 259688, 259688, 60636, 2172},
{6544, 331584, 2485232, 4674944, 2485232, 331584, 6544},
{19664, 1756304, 21707888, 69413168, 69413168, 21707888, 1756304, 19664},
{59028, 9116096, 178300784, 906923072, 1527092216, 906923072, 178300784, 9116096, 59028}
		

Crossrefs

Programs

  • Mathematica
    q[x_, n_] = 2^n*(1 - x)^(n + 1)* LerchPhi[x, -n, 1/2]; p[x_, n_] = (q[x, n] - (x + 1)^n)/x; Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 2, 10}]; Flatten[%]

Formula

q(x,n)=2^n*(1 - x)^(n + 1)* LerchPhi[x, -n, 1/2]; p(x,n)=((x+1)^n-q(x,n))/x; t(n,m)=Coefficients(p(x,n)) with n starting at 2.