A146568 Coefficients of Pascal's triangle polynomial minus MacMahon polynomial A060187 with a power of x divided out: q(x,n)=2^n*(1 - x)^(n + 1)* LerchPhi[x, -n, 1/2]; p(x,n)=((x+1)^n-q(x,n))/x.
4, 20, 20, 72, 224, 72, 232, 1672, 1672, 232, 716, 10528, 23528, 10528, 716, 2172, 60636, 259688, 259688, 60636, 2172, 6544, 331584, 2485232, 4674944, 2485232, 331584, 6544, 19664, 1756304, 21707888, 69413168, 69413168, 21707888, 1756304
Offset: 2
Examples
Triangle starts: {4}, {20, 20}, {72, 224, 72}, {232, 1672, 1672, 232}, {716, 10528, 23528, 10528, 716}, {2172, 60636, 259688, 259688, 60636, 2172}, {6544, 331584, 2485232, 4674944, 2485232, 331584, 6544}, {19664, 1756304, 21707888, 69413168, 69413168, 21707888, 1756304, 19664}, {59028, 9116096, 178300784, 906923072, 1527092216, 906923072, 178300784, 9116096, 59028}
Programs
-
Mathematica
q[x_, n_] = 2^n*(1 - x)^(n + 1)* LerchPhi[x, -n, 1/2]; p[x_, n_] = (q[x, n] - (x + 1)^n)/x; Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 2, 10}]; Flatten[%]
Formula
q(x,n)=2^n*(1 - x)^(n + 1)* LerchPhi[x, -n, 1/2]; p(x,n)=((x+1)^n-q(x,n))/x; t(n,m)=Coefficients(p(x,n)) with n starting at 2.
Comments