cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A146745 Coefficients of Pascal's triangle polynomial minus MacMahon polynomial A060187 with minus the first and last row terms and powers of x divided out: f(n)=3^n - 2*n - 1; q(x,n)=2^n*(1 - x)^(n + 1)* LerchPhi[x, -n, 1/2]; p(x,n)=((q[x, n] - (x + 1)^n)/x - f[n] - f[n]*x^(n - 2))/x.

Original entry on oeis.org

224, 1672, 1672, 10528, 23528, 10528, 60636, 259688, 259688, 60636, 331584, 2485232, 4674944, 2485232, 331584, 1756304, 21707888, 69413168, 69413168, 21707888, 1756304, 9116096, 178300784, 906923072, 1527092216, 906923072
Offset: 2

Views

Author

Roger L. Bagula, Nov 01 2008

Keywords

Comments

Row sums starting with n=4 are {224, 3344, 44584, 640648, 10308576, 185754720, 3715772120}. First elements in each row are {224, 1672, 1672, 10528, 60636, 331584, 1756304, 9116096}. Subtracting out the row terms gives the middle elements of the difference.

Examples

			Triangle starts
{224},
{1672, 1672},
{10528, 23528, 10528},
{60636, 259688, 259688, 60636},
{331584, 2485232, 4674944, 2485232, 331584},
{1756304, 21707888, 69413168, 69413168, 21707888, 1756304},
{9116096, 178300784, 906923072, 1527092216, 906923072, 178300784, 9116096}
		

Crossrefs

Programs

  • Mathematica
    q[x_, n_] = 2^n*(1 - x)^(n + 1)* LerchPhi[x, -n, 1/2]; p[x_, n_] = ((q[x, n] - (x + 1)^n)/x - f[n] - f[n]*x^(n - 2))/x; Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 4, 10}]; Flatten[%]

Formula

f(n) = 3^n - 2*n - 1;
q(x,n) = 2^n*(1 - x)^(n + 1)* LerchPhi[x, -n, 1/2];
p(x,n) = ((q[x, n] - (x + 1)^n)/x - f[n] - f[n]*x^(n - 2))/x;
t(n,m) = Coefficients(p(x,n)) with n starting at 4.