A146745 Coefficients of Pascal's triangle polynomial minus MacMahon polynomial A060187 with minus the first and last row terms and powers of x divided out: f(n)=3^n - 2*n - 1; q(x,n)=2^n*(1 - x)^(n + 1)* LerchPhi[x, -n, 1/2]; p(x,n)=((q[x, n] - (x + 1)^n)/x - f[n] - f[n]*x^(n - 2))/x.
224, 1672, 1672, 10528, 23528, 10528, 60636, 259688, 259688, 60636, 331584, 2485232, 4674944, 2485232, 331584, 1756304, 21707888, 69413168, 69413168, 21707888, 1756304, 9116096, 178300784, 906923072, 1527092216, 906923072
Offset: 2
Examples
Triangle starts {224}, {1672, 1672}, {10528, 23528, 10528}, {60636, 259688, 259688, 60636}, {331584, 2485232, 4674944, 2485232, 331584}, {1756304, 21707888, 69413168, 69413168, 21707888, 1756304}, {9116096, 178300784, 906923072, 1527092216, 906923072, 178300784, 9116096}
Programs
-
Mathematica
q[x_, n_] = 2^n*(1 - x)^(n + 1)* LerchPhi[x, -n, 1/2]; p[x_, n_] = ((q[x, n] - (x + 1)^n)/x - f[n] - f[n]*x^(n - 2))/x; Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 4, 10}]; Flatten[%]
Formula
f(n) = 3^n - 2*n - 1;
q(x,n) = 2^n*(1 - x)^(n + 1)* LerchPhi[x, -n, 1/2];
p(x,n) = ((q[x, n] - (x + 1)^n)/x - f[n] - f[n]*x^(n - 2))/x;
t(n,m) = Coefficients(p(x,n)) with n starting at 4.
Comments