cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A146885 a(n) = 8*Sum_{k=0..n} 7^k.

Original entry on oeis.org

8, 64, 456, 3200, 22408, 156864, 1098056, 7686400, 53804808, 376633664, 2636435656, 18455049600, 129185347208, 904297430464, 6330082013256, 44310574092800, 310174018649608, 2171218130547264, 15198526913830856
Offset: 0

Views

Author

Roger L. Bagula, Nov 02 2008

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select 8^n else 8*Self(n-1) -7*Self(n-2): n in [1..41]]; // G. C. Greubel, Oct 12 2022
    
  • Mathematica
    a[n_]:= Sum[8*7^m, {m,0,n}]; Table[a[n], {n,0,30}]
    LinearRecurrence[{8,-7}, {8,64}, 41] (* G. C. Greubel, Oct 12 2022 *)
  • SageMath
    [(4/3)*(7^(n+1)-1) for n in range(41)] # G. C. Greubel, Oct 12 2022

Formula

From G. C. Greubel, Oct 12 2022: (Start)
a(n) = (4/3)*(7^(n+1) - 1).
a(n) = 8*A023000(n+1).
a(n) = 8*a(n-1) - 7*a(n-2).
G.f.: 8/((1-x)*(1-7*x)).
E.g.f.: (4/3)*(7*exp(7*x) - exp(x)). (End)