A146891 Terminal point of a repeated reduction of usigma starting at 2^n.
1, 6, 20, 72, 72, 72, 20, 72, 72, 17280, 4800, 17280, 72, 17280, 1152000, 5184, 5184, 5184, 96000, 5184, 345600, 1244160, 320000, 1244160, 82944000, 89579520, 71663616000, 298598400, 1244160, 82944000, 23040000, 82944000, 19906560000
Offset: 0
Keywords
Examples
n=5 b(n) : 2^5 -> 11 -> 1 c(n) : 2^5 -> 2^5*3 -> 2^3*3^2 So a(5) = c(2) = 2^3*3^2 = 72.
Programs
-
Maple
PF := proc(n,p) local nshf,a ; a := 1; nshf := n ; while (nshf mod p ) = 0 do nshf := nshf/p ; a := a*p ; od: a ; end: A146891 := proc(n) local b,a,k,t ; b := [2^n] ; while op(-1,b) <> 1 do t := A034448(op(-1,b)) ; b := [op(b), t/A006519(t)/ A038500(t)/PF(t,5) ] ; od: a := 2^n ; for k from 2 to nops(b) do t := A034448(op(k-1,b)) ; a := a/ A006519(t) *A038500(t)*PF(t,5) ; od: a ; end: # R. J. Mathar, Jun 24 2009
-
Mathematica
PF[n_, p_] := p^IntegerExponent[n, p]; usigma[n_] := If[n == 1, 1, Times @@ (1+Power @@@ FactorInteger[n])]; A146891[n_] := Module[{b, a, k, t}, b = {2^n}; While[b[[-1]] != 1, t = usigma[b[[-1]]]; b = Append[b, t/PF[t, 2]/PF[t, 3]/PF[t, 5]]]; a = 2^n; For[k = 2, k <= Length[b], k++, t = usigma[b[[k-1]]]; a = a/PF[t, 2]*PF[t, 3]*PF[t, 5]]; a]; Table[A146891[n], {n, 0, 32}] (* Jean-François Alcover, Apr 09 2024, after R. J. Mathar *)
Extensions
More terms from R. J. Mathar, Jun 24 2009
Edited by R. J. Mathar, Jul 02 2009
Description of relation between a(n) and c(k) corrected by R. J. Mathar, Jul 07 2009
Comments