cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A146983 a(n) = A002531(n)*A002531(n+1).

Original entry on oeis.org

1, 2, 10, 35, 133, 494, 1846, 6887, 25705, 95930, 358018, 1336139, 4986541, 18610022, 69453550, 259204175, 967363153, 3610248434, 13473630586, 50284273907, 187663465045, 700369586270, 2613814880038, 9754889933879, 36405744855481, 135868089488042
Offset: 0

Views

Author

Paul Barry, Nov 04 2008

Keywords

Comments

a(n+1) is the Hankel transform of A051960 aerated.

Crossrefs

Programs

  • GAP
    a:=[1,2,10];; for n in [4..30] do a[n]:=3*a[n-1]+3*a[n-2]-a[n-3]; od; a; # G. C. Greubel, Jan 09 2020
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x+x^2)/((1+x)*(1-4*x+x^2)) )); // G. C. Greubel, Jan 09 2020
    
  • Maple
    seq(coeff(series((1-x+x^2)/((1+x)*(1-4*x+x^2)), x, n+1), x, n), n = 0..30); # G. C. Greubel, Jan 09 2020
  • Mathematica
    LinearRecurrence[{3,3,-1}, {1,2,10}, 30] (* G. C. Greubel, Jan 09 2020 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-x+x^2)/((1+x)*(1-4*x+x^2))) \\ G. C. Greubel, Jan 09 2020
    
  • Sage
    def A146983_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-x+x^2)/((1+x)*(1-4*x+x^2)) ).list()
    A146983_list(30) # G. C. Greubel, Jan 09 2020
    

Formula

From Peter Bala, May 01 2012: (Start)
a(n) = (-1)^n + 3*Sum_{k = 1..n} (-1)^(n-k)*6^(k-1)*binomial(n+k,2*k).
a(n) = (-1)^n*R(n,-3), where R(n,x) is the n-th row polynomial of A211955.
a(n) = (-1)^n*1/u*T(n,u)*T(n+1,u) with u = sqrt(-1/2) and T(n,x) denotes the Chebyshev polynomial of the first kind Cf. A182432.
Recurrence: a(n) = 4*a(n-1) -a(n-2) +3*(-1)^n, with a(0) = 1 and a(1) = 2; a(n)*a(n-2) = a(n-1)*(a(n-1)+3*(-1)^n).
Sum_{k>=0} (-1)^k/a(k) = 1/sqrt(3). (End)
From Colin Barker, Jul 29 2013: (Start)
a(n) = 3*a(n-1) + 3*a(n-2) - a(n-3).
G.f.: (1-x+x^2)/((1+x)*(1-4*x+x^2)). (End)

Extensions

More terms from Colin Barker, Jul 29 2013