A146986 Triangle, read by rows, T(n, k) = binomial(n, k) for n < 2 and binomial(n, k) + 2^(n-1) * binomial(n-2, k-1) otherwise.
1, 1, 1, 1, 4, 1, 1, 7, 7, 1, 1, 12, 22, 12, 1, 1, 21, 58, 58, 21, 1, 1, 38, 143, 212, 143, 38, 1, 1, 71, 341, 675, 675, 341, 71, 1, 1, 136, 796, 1976, 2630, 1976, 796, 136, 1, 1, 265, 1828, 5460, 9086, 9086, 5460, 1828, 265, 1, 1, 522, 4141, 14456, 28882, 36092, 28882, 14456, 4141, 522, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 4, 1; 1, 7, 7, 1; 1, 12, 22, 12, 1; 1, 21, 58, 58, 21, 1; 1, 38, 143, 212, 143, 38, 1;
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
GAP
T:= function(n,k,q) if n<2 then return Binomial(n,k); else return Binomial(n,k) + q^(n-1)*Binomial(n-2,k-1); fi; end; Flat(List([0..10], n-> List([0..n], k-> T(n,k,2) ))); # G. C. Greubel, Jan 09 2020
-
Magma
T:= func< n,k,q | n lt 2 select Binomial(n,k) else Binomial(n,k) + q^(n-1)*Binomial(n-2,k-1) >; [T(n,k,2): k in [0..n], n in [0..10]]; // G. C. Greubel, Jan 09 2020
-
Maple
q:=2; seq(seq( `if`(n<2, binomial(n,k), binomial(n,k) + q^(n-1)*binomial(n-2,k-1)), k=0..n), n=0..10); # G. C. Greubel, Jan 09 2020
-
Mathematica
Table[If[n<2, Binomial[n, m], Binomial[n, m] + 2^(n-1)*Binomial[n-2, m-1]], {n, 0, 10}, {m, 0, n}]//Flatten
-
PARI
T(n,k) = if(n<2, binomial(n,k), binomial(n,k) + 2^(n-1)*binomial(n-2,k-1) ); \\ G. C. Greubel, Jan 09 2020
-
Sage
@CachedFunction def T(n, k, q): if (n<2): return binomial(n,k) else: return binomial(n,k) + q^(n-1)*binomial(n-2,k-1) [[T(n, k, 2) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jan 09 2020
Formula
T(n, k) = binomial(n, k) for n < 2 and binomial(n, k) + 2^(n-1) * binomial(n-2, k-1) otherwise.
Sum_{k=0..n} T(n,k) = n+1 for n < 2 and 16*binomial(2^(n-3) + 1, 2) otherwise. - G. C. Greubel, Jan 09 2020
Extensions
Edited by G. C. Greubel, Jan 09 2020
Comments