cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A146988 Triangle, read by rows, T(n, k) = binomial(n, k) for n < 2 and binomial(n, k) + 4^(n-1) * binomial(n-2, k-1) otherwise.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 19, 19, 1, 1, 68, 134, 68, 1, 1, 261, 778, 778, 261, 1, 1, 1030, 4111, 6164, 4111, 1030, 1, 1, 4103, 20501, 40995, 40995, 20501, 4103, 1, 1, 16392, 98332, 245816, 327750, 245816, 98332, 16392, 1, 1, 65545, 458788, 1376340, 2293886, 2293886, 1376340, 458788, 65545, 1
Offset: 0

Views

Author

Roger L. Bagula, Nov 04 2008

Keywords

Comments

Row sums are {1, 2, 8, 40, 272, 2080, 16448, 131200, 1048832, 8389120, 67109888, ...} = {1, 2, 8*A081342(n)}. (modified by G. C. Greubel, Jan 09 2020)

Examples

			Triangle begins as:
  1;
  1,    1;
  1,    6,    1;
  1,   19,   19,    1;
  1,   68,  134,   68,    1;
  1,  261,  778,  778,  261,    1;
  1, 1030, 4111, 6164, 4111, 1030, 1;
		

Crossrefs

Programs

  • GAP
    T:= function(n,k,q)
        if n<2 then return Binomial(n,k);
        else return Binomial(n,k) + q^(n-1)*Binomial(n-2,k-1);
        fi; end;
    Flat(List([0..10], n-> List([0..n], k-> T(n,k,4) ))); # G. C. Greubel, Jan 09 2020
  • Magma
    T:= func< n,k,q | n lt 2 select Binomial(n,k) else Binomial(n,k) + q^(n-1)*Binomial(n-2,k-1) >;
    [T(n,k,4): k in [0..n], n in [0..10]]; // G. C. Greubel, Jan 09 2020
    
  • Maple
    q:=4; seq(seq( `if`(n<2, binomial(n,k), binomial(n,k) + q^(n-1)*binomial(n-2,k-1)), k=0..n), n=0..10); # G. C. Greubel, Jan 09 2020
  • Mathematica
    Table[If[n<2, Binomial[n, m], Binomial[n, m] + 4^(n-1)*Binomial[n-2, m-1]], {n, 0, 10}, {m, 0, n}]//Flatten
  • PARI
    T(n,k) = if(n<2, binomial(n,k), binomial(n,k) + 4^(n-1)*binomial(n-2,k-1) ); \\ G. C. Greubel, Jan 09 2020
    
  • Sage
    @CachedFunction
    def T(n, k, q):
        if (n<2): return binomial(n,k)
        else: return binomial(n,k) + q^(n-1)*binomial(n-2,k-1)
    [[T(n, k, 4) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jan 09 2020
    

Formula

T(n, k) = binomial(n, k) for n < 2 and binomial(n, k) + 2^(n-1) * binomial(n-2, k-1) otherwise.
Sum_{k=0..n} T(n,k) = n+1 for n < 2 and 4*(2^n + 8^n) otherwise. - G. C. Greubel, Jan 09 2020

Extensions

Edited by G. C. Greubel, Jan 09 2020