A146988 Triangle, read by rows, T(n, k) = binomial(n, k) for n < 2 and binomial(n, k) + 4^(n-1) * binomial(n-2, k-1) otherwise.
1, 1, 1, 1, 6, 1, 1, 19, 19, 1, 1, 68, 134, 68, 1, 1, 261, 778, 778, 261, 1, 1, 1030, 4111, 6164, 4111, 1030, 1, 1, 4103, 20501, 40995, 40995, 20501, 4103, 1, 1, 16392, 98332, 245816, 327750, 245816, 98332, 16392, 1, 1, 65545, 458788, 1376340, 2293886, 2293886, 1376340, 458788, 65545, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 6, 1; 1, 19, 19, 1; 1, 68, 134, 68, 1; 1, 261, 778, 778, 261, 1; 1, 1030, 4111, 6164, 4111, 1030, 1;
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
GAP
T:= function(n,k,q) if n<2 then return Binomial(n,k); else return Binomial(n,k) + q^(n-1)*Binomial(n-2,k-1); fi; end; Flat(List([0..10], n-> List([0..n], k-> T(n,k,4) ))); # G. C. Greubel, Jan 09 2020
-
Magma
T:= func< n,k,q | n lt 2 select Binomial(n,k) else Binomial(n,k) + q^(n-1)*Binomial(n-2,k-1) >; [T(n,k,4): k in [0..n], n in [0..10]]; // G. C. Greubel, Jan 09 2020
-
Maple
q:=4; seq(seq( `if`(n<2, binomial(n,k), binomial(n,k) + q^(n-1)*binomial(n-2,k-1)), k=0..n), n=0..10); # G. C. Greubel, Jan 09 2020
-
Mathematica
Table[If[n<2, Binomial[n, m], Binomial[n, m] + 4^(n-1)*Binomial[n-2, m-1]], {n, 0, 10}, {m, 0, n}]//Flatten
-
PARI
T(n,k) = if(n<2, binomial(n,k), binomial(n,k) + 4^(n-1)*binomial(n-2,k-1) ); \\ G. C. Greubel, Jan 09 2020
-
Sage
@CachedFunction def T(n, k, q): if (n<2): return binomial(n,k) else: return binomial(n,k) + q^(n-1)*binomial(n-2,k-1) [[T(n, k, 4) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jan 09 2020
Formula
T(n, k) = binomial(n, k) for n < 2 and binomial(n, k) + 2^(n-1) * binomial(n-2, k-1) otherwise.
Sum_{k=0..n} T(n,k) = n+1 for n < 2 and 4*(2^n + 8^n) otherwise. - G. C. Greubel, Jan 09 2020
Extensions
Edited by G. C. Greubel, Jan 09 2020
Comments