A146990 Triangle, read by rows, T(n, k) = binomial(n, k) for n < 2 and binomial(n, k) + n^(n-1) * binomial(n-2, k-1) otherwise.
1, 1, 1, 1, 4, 1, 1, 12, 12, 1, 1, 68, 134, 68, 1, 1, 630, 1885, 1885, 630, 1, 1, 7782, 31119, 46676, 31119, 7782, 1, 1, 117656, 588266, 1176525, 1176525, 588266, 117656, 1, 1, 2097160, 12582940, 31457336, 41943110, 31457336, 12582940, 2097160, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 4, 1; 1, 12, 12, 1; 1, 68, 134, 68, 1; 1, 630, 1885, 1885, 630, 1; 1, 7782, 31119, 46676, 31119, 7782, 1;
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Crossrefs
Cf. A028262.
Programs
-
GAP
T:= function(n,k) if n<2 then return Binomial(n,k); else return Binomial(n,k) + n^(n-1)*Binomial(n-2,k-1); fi; end; Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Jan 09 2020
-
Magma
T:= func< n,k | n lt 2 select Binomial(n,k) else Binomial(n,k) + n^(n-1)*Binomial(n-2,k-1) >; [T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Jan 09 2020
-
Maple
seq(seq( `if`(n<2, binomial(n,k), binomial(n,k) + n^(n-1)*binomial(n-2,k-1)), k=0..n), n=0..10); # G. C. Greubel, Jan 09 2020
-
Mathematica
Table[If[n <2, Binomial[n, m], Binomial[n, m] + n^(n - 1)*Binomial[n - 2, m - 1]], {n, 0, 10}, {m, 0, n}]; Flatten[%]
-
PARI
T(n,k) = if(n<2, binomial(n,k), binomial(n,k) + n^(n-1)*binomial(n-2,k-1) ); \\ G. C. Greubel, Jan 09 2020
-
Sage
@CachedFunction def T(n, k): if (n<2): return binomial(n,k) else: return binomial(n,k) + n^(n-1)*binomial(n-2,k-1) [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jan 09 2020
Formula
T(n, k) = binomial(n, k) for n < 2 and binomial(n, k) + n^(n-1) * binomial(n-2, k-1) otherwise.
Extensions
Edited by G. C. Greubel, Jan 09 2020
Comments