A147301 a(n) = smallest value of parameter m such that the function rad(m n (n - m)) has maximal value n=2,3,4..., 0 < m < n where the function rad(k) (also called radical(k)) is the product of distinct prime divisors of k.
1, 1, 1, 2, 1, 2, 3, 2, 3, 5, 5, 6, 3, 2, 5, 7, 7, 6, 7, 10, 7, 10, 11, 11, 11, 13, 13, 14, 13, 14, 15, 14, 15, 13, 17, 15, 17, 17, 19, 19, 19, 21, 21, 22, 17, 21, 19, 23, 21, 22, 23, 23, 23, 26, 23, 26, 23, 29, 29, 30, 29, 29, 31, 31, 31, 33, 33, 34, 33, 34, 35, 35, 35, 37, 37, 38
Offset: 2
Keywords
Programs
-
Mathematica
logmax = 0; aa = {}; bb = {}; cc = {}; dd = {}; ee = {}; ff = {}; gg \ = {}; Do[min = 10^100; max = 0; ile = 0; Do[If[GCD[m, n, n - m] == 1, ile = ile + 1; s = m n (n - m); k = FactorInteger[s]; g = 1; Do[g = g k[[p]][[1]], {p, 1, Length[k]}]; If[g > max, max = g; mmax = m]; If[g < min, min = g; mmin = m]], {m, 1, n - 1}]; AppendTo[aa, min]; AppendTo[bb, max]; AppendTo[cc, mmax]; AppendTo[dd, mmin]; AppendTo[gg, ile]; If[(Log[n]/Log[min]) > logmax, logmax = (Log[n]/Log[min]); AppendTo[ee, {N[logmax], n, mmin, min, mmax, max}]; Print[{N[logmax], n, mmin, min, mmax, max}]; AppendTo[ff, n]], {n, 2, 129}]; cc (* Artur Jasinski *)
Comments