cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A147298 Minimum of rad(m (n - m) n) for 0 < m < n, gcd(m,n) = 1, where rad(k) = A007947(k) = product of prime factors of k.

Original entry on oeis.org

2, 6, 6, 10, 30, 42, 14, 6, 30, 66, 66, 78, 182, 210, 30, 34, 102, 114, 190, 210, 462, 322, 138, 30, 130, 30, 42, 174, 870, 186, 30, 66, 510, 210, 210, 222, 1254, 546, 390, 246, 1722, 258, 946, 330, 690, 1410, 282, 42, 70, 510, 390, 742, 210, 330, 770, 570, 1218
Offset: 2

Views

Author

Artur Jasinski, Nov 05 2008

Keywords

Comments

Function rad(k) is used in ABC conjecture applications.
For biggest values of function rad(m n (n - m)) see A147299.
For numbers m for which rad(m n (n - m)) reached minimal value see A147300.
For numbers m for which rad(m n (n - m)) reached maximal value see A147301.
Sequence in each value Log[n]/Log[A147298(n)] reached records see A147302.

Crossrefs

Programs

  • Maple
    A147298 := proc(n) local rad, g, L;
    rad := n -> mul(k, k in numtheory:-factorset(n)):
    g := (n, k) -> `if`(igcd(n, k) = 1, 1, infinity):
    L := n -> [seq(g(n,k)*rad(n*k*(n-k)), k=1..n/2)]:
    min(L(n)) end: seq(A147298(n), n=2..58); # Peter Luschny, Aug 06 2019
  • Mathematica
    logmax = 0; aa = {}; bb = {}; cc = {}; dd = {}; ee = {}; ff = {}; gg \ = {}; Do[min = 10^100; max = 0; ile = 0; Do[If[GCD[m, n, n - m] == 1, ile = ile + 1; s = m n (n - m); k = FactorInteger[s]; g = 1; Do[g = g k[[p]][[1]], {p, 1, Length[k]}]; If[g > max, max = g; mmax = m]; If[g < min, min = g; mmin = m]], {m, 1, n - 1}]; AppendTo[aa, min]; AppendTo[bb, max]; AppendTo[cc, mmax]; AppendTo[dd, mmin]; AppendTo[gg, ile]; If[(Log[n]/Log[min]) > logmax, logmax = (Log[n]/Log[min]); AppendTo[ee, {N[logmax], n, mmin, min, mmax, max}]; Print[{N[logmax], n, mmin, min, mmax, max}]; AppendTo[ff, n]], {n, 2, 129}]; aa (*Artur Jasinski*)
    Table[Min[Times @@ FactorInteger[#][[All, 1]] & /@ ((m = Select[Range[1, n - 1], GCD[n, #] == 1 &])*(n - m)*n)], {n, 2, 58}] (* Ivan Neretin, May 21 2015 *)
  • PARI
    A147298(n)= local(m=n^2); for( a=1,n\2, gcd(a,n)>1 && next; A007947(n-a)*A007947(a)A007947(n-a)*A007947(a)); m*A007947(n)

A147300 a(n) = smallest value of parameter m such that the function rad(m*n*(n - m)) has minimal value n=2,3,4,..., 0 < m < n where the function rad(k) (also called radical(k)) is the product of distinct prime divisors of k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 2, 1, 2, 1, 4, 5, 1, 9, 3, 1, 1, 11, 7, 1, 9, 1, 16, 1, 1, 1, 2, 1, 1, 1, 1, 25, 4, 5, 1, 1, 25, 9, 27, 1, 1, 1, 1, 1, 1, 1, 3, 1, 5, 1, 7, 1, 1, 25, 11, 1, 13, 1, 4, 1, 1, 1, 2, 1, 4, 5, 23, 7, 8, 1, 27, 11, 1, 13, 14, 1, 1, 17, 1, 1
Offset: 2

Views

Author

Artur Jasinski, Nov 05 2008

Keywords

Comments

The function rad(k) is used in ABC conjecture applications.
For smallest values of the function rad(m n (n - m)) see A147298.
For the largest values of the function rad(m n (n - m)) see A147299.
For numbers m at which rad(m*n*(n - m)) reaches minimal value see A147300.
For numbers m at which rad(m*n*(n - m)) reaches maximal value see A147301.
For sequence in which each value log(n)/log(A147298(n)) reaches records see A147302.

Crossrefs

Programs

  • Mathematica
    logmax = 0; aa = {}; bb = {}; cc = {}; dd = {}; ee = {}; ff = {}; gg \ = {}; Do[min = 10^100; max = 0; ile = 0; Do[If[GCD[m, n, n - m] == 1, ile = ile + 1; s = m n (n - m); k = FactorInteger[s]; g = 1; Do[g = g k[[p]][[1]], {p, 1, Length[k]}]; If[g > max, max = g; mmax = m]; If[g < min, min = g; mmin = m]], {m, 1, n - 1}]; AppendTo[aa, min]; AppendTo[bb, max]; AppendTo[cc, mmax]; AppendTo[dd, mmin]; AppendTo[gg, ile]; If[(Log[n]/Log[min]) > logmax, logmax = (Log[n]/Log[min]); AppendTo[ee, {N[logmax], n, mmin, min, mmax, max}]; Print[{N[logmax], n, mmin, min, mmax, max}]; AppendTo[ff, n]], {n, 2, 129}]; dd (* Artur Jasinski *)

A147302 Numbers k where records occur in the expression log(k) / log(A147298(k)).

Original entry on oeis.org

2, 9, 81, 128, 2401, 4375, 6436343
Offset: 1

Views

Author

Artur Jasinski, Nov 05 2008

Keywords

Comments

Numbers a(n) such that a(n)/R(m a(n)(a(n)-m)) > a(n-1)/R(g a(n-1)(a(n-1)-g)) 0 < m < a(n) and 0 < g < a(n-1).
This sequence is list of successive records in the abc conjecture.
No more terms up to 10^20.
For smallest values of function rad(m*n*(n-m)) see A147298.
For biggest values of function rad(m*n*(n-m)) see A147299.
For numbers m for which rad(m*n*(n-m)) reaches a minimal value see A147300.
For numbers m for which rad(m*n*(n-m)) reaches a maximal value see A147301.

Crossrefs

Programs

  • Mathematica
    logmax = 0; aa = {}; Do[min = 10^100; max = 0; ile = 0; Do[If[GCD[m, n, n - m] == 1, ile = ile + 1; s = m n (n - m); k = FactorInteger[s]; g = 1; Do[g = g k[[p]][[1]], {p, 1, Length[k]}]; If[g > max, max = g; mmax = m]; If[g < min, min = g; mmin = m]], {m, 1, n - 1}]; If[(Log[n]/Log[min]) > logmax, logmax = (Log[n]/Log[min]); AppendTo[aa, n]; Print[{N[logmax], n, mmin, min, mmax, max}]; AppendTo[ff, n]], {n, 2, 2500}]; aa

A147299 a(n) = largest value of the function rad(m*n*(n - m)) n=2,3,4,..., 0 < m < n where the function rad(k) (also called radical(k)) is the product of distinct prime divisors of k.

Original entry on oeis.org

2, 6, 6, 30, 30, 70, 30, 42, 210, 330, 210, 546, 462, 390, 110, 1190, 462, 1482, 910, 2310, 2310, 2990, 858, 770, 4290, 546, 2730, 6090, 6630, 7378, 510, 8778, 9690, 10010, 1938, 12210, 13566, 14586, 3990, 17138, 18354, 19866, 10626, 7590, 22678
Offset: 2

Views

Author

Artur Jasinski, Nov 05 2008

Keywords

Comments

The function rad(k) is used in ABC conjecture applications.
For smallest values of the function rad(m n (n - m)) see A147298.
For numbers m at which rad(m*n*(n - m)) reaches minimal value see A147300.
For numbers m at which rad(m*n*(n - m)) reaches maximal value see A147301.
Sequence in which each value log(n)/log(A147298(n)) reaches records see A147302.

Crossrefs

Programs

  • Mathematica
    logmax = 0; aa = {}; bb = {}; cc = {}; dd = {}; ee = {}; ff = {}; gg \ = {}; Do[min = 10^100; max = 0; ile = 0; Do[If[GCD[m, n, n - m] == 1, ile = ile + 1; s = m n (n - m); k = FactorInteger[s]; g = 1; Do[g = g k[[p]][[1]], {p, 1, Length[k]}]; If[g > max, max = g; mmax = m]; If[g < min, min = g; mmin = m]], {m, 1, n - 1}]; AppendTo[aa, min]; AppendTo[bb, max]; AppendTo[cc, mmax]; AppendTo[dd, mmin]; AppendTo[gg, ile]; If[(Log[n]/Log[min]) > logmax, logmax = (Log[n]/Log[min]); AppendTo[ee, {N[logmax], n, mmin, min, mmax, max}]; Print[{N[logmax], n, mmin, min, mmax, max}]; AppendTo[ff, n]], {n, 2, 129}]; bb (* Artur Jasinski *)
    Table[Max[Times @@ FactorInteger[#][[All, 1]] & /@ ((m = Range[1, n - 1])*(n - m)*n)], {n, 2, 46}] (* Ivan Neretin, May 21 2015 *)

A179017 Odd numbers c such that c*(c^2 - 1)/4 is squarefree.

Original entry on oeis.org

3, 5, 11, 13, 21, 29, 43, 59, 61, 67, 69, 77, 83, 85, 93, 115, 123, 131, 133, 139, 141, 155, 157, 165, 173, 187, 203, 205, 211, 213, 219, 221, 227, 229, 237, 259, 267, 277, 283, 285, 291, 309, 317, 331, 347, 355, 357, 365, 371, 373, 381, 389, 403, 411, 419, 421
Offset: 1

Views

Author

Artur Jasinski, Jun 24 2010

Keywords

Comments

Original title was: "Numbers c such that (c^2-1)c is square free and gcd(c-1,c,c+1)=1", but (c^2-1)c is never squarefree for odd c, and gcd(n,n+1) is always = 1. - M. F. Hasler, Nov 03 2013
These numbers c with distribution a+b=c such that a=(c-1)/2 (see A172186) and b=(c+1)/2 (see A179019) have minimal possible values with function L(a,b,c) = log(c)/log(N(a,b,c)) = log(c)/log((c^2-1)c/4).
This function is minimal orbital in hypothesis (a,b,c).
There are no numbers or distributions which have value L less than log(c)/log((c^2-1)*c/4).
Equivalently, odd squarefree numbers c such that (c^2 - 1)/4 is also squarefree. - Jon E. Schoenfield, Feb 13 2023
The asymptotic density of this sequence is Product_{p prime} (1 - 3/p^2) = A206256 = 0.125486980905... (Tsang, 1985). - Amiram Eldar, Feb 26 2024

Crossrefs

Programs

  • Mathematica
    aa = {}; Do[If[(GCD[x, (x - 1)/2] == 1) && (GCD[x, (x + 1)/2] == 1) && (GCD[(x - 1)/2, (x + 1)/2] == 1), If[SquareFreeQ[(x^2 - 1) x/4], AppendTo[aa, x]]], {x, 2, 1000}]; aa
  • PARI
    forstep(n=3,421,2,issquarefree(n*(n^2-1)/4)&&print1(n",")) \\ M. F. Hasler, Nov 03 2013
    
  • PARI
    is(n)=n%2 && issquarefree(n) && issquarefree(n^2\4) \\ Charles R Greathouse IV, Mar 11 2014

Formula

a(n) = 2*A172186(n) + 1. - Bernard Schott, Mar 06 2023

Extensions

Edited by M. F. Hasler, Nov 03 2013

A179019 a(n) = (A179017(n)+1)/2.

Original entry on oeis.org

2, 3, 6, 7, 11, 15, 22, 30, 31, 34, 35, 39, 42, 43, 47, 58, 62, 66, 67, 70, 71, 78, 79, 83, 87, 94, 102, 103, 106, 107, 110, 111, 114, 115, 119, 130, 134, 139, 142, 143, 146, 155, 159, 166, 174, 178, 179, 183, 186, 187, 191, 195, 202, 206, 210, 211, 214, 215, 218, 219
Offset: 1

Views

Author

Artur Jasinski, Jun 24 2010

Keywords

Comments

For numbers a and c, see A172186 and A179017. Numbers b are this sequence.
These numbers c, with distribution a+b=c such that a=(c-1)/2 and b=(c+1)/2, have minimal possible values with function L(a,b,c) = log(c)/log(N[a,b,c]) = log(c)/log((c^2-1)c/4).
There exist no numbers or distributions for which L < log(c)/log((c^2-1)c/4). - Artur Jasinski

Crossrefs

Programs

  • Mathematica
    aa = {}; Do[If[(GCD[x, (x - 1)/2] == 1) && (GCD[x, (x + 1)/2] == 1) && (GCD[(x - 1)/2, (x + 1)/2] == 1), If[SquareFreeQ[(x^2 - 1) x/4], AppendTo[aa, (x + 1)/2]]], {x, 2, 1000}]; aa

Formula

a(n) = A179017(n) - A172186(n). - Hugo Pfoertner, Mar 22 2020

A147303 Numbers k where records occur in expression Log[A147298(k)]/Log[k] k=2,3,4,...

Original entry on oeis.org

2, 3, 6, 7, 14, 15, 22, 30, 42, 62, 66, 70, 78, 102, 114, 158, 166, 182, 186, 210, 222, 230, 255, 258, 282, 318, 330, 402, 430, 438, 462, 470, 474, 494, 498, 510, 570, 582, 598, 690, 710, 786, 798, 822, 870, 906, 930, 942, 1002, 1038, 1074, 1110, 1122, 1146, 1158
Offset: 1

Views

Author

Artur Jasinski, Nov 06 2008

Keywords

Comments

Limit k->Infinity Log[A147298(k)]/Log[k] = 2.
Values m for which records occur, see A147301.

Crossrefs

Programs

  • Mathematica
    logmin = 10^10; logmax = 0; aa = {}; bb = {}; cc = {}; dd = {}; ee = {}; ff = {}; hh = {}; ii = {}; jj = {}; Do[min = 10^100; max = 0; Do[If[GCD[m, n, n - m] == 1, s = m n (n - m); k = FactorInteger[s]; g = 1; Do[g = g k[[p]][[1]], {p, 1, Length[k]}]; If[g > max, max = g; mmax = m]; If[g < min, min = g; mmin = m]], {m, 1, n - 1}]; AppendTo[aa, min]; If[(Log[n]/Log[min]) > logmax, logmax = (Log[n]/Log[min]); AppendTo[ee, {N[logmax], n, mmin, min, mmax, max}]; AppendTo[ff, n]]; If[(Log[n]/Log[min]) < logmin, logmin = (Log[n]/Log[min]); AppendTo[hh, {N[logmin], n, mmin, min, mmax, max}]; AppendTo[ii, n]]; AppendTo[bb, max]; AppendTo[dd, mmin], {n, 2, 1200}]; ii
Showing 1-7 of 7 results.